Advertisements
Advertisements
प्रश्न
Answer the following:
There are 4 doctors and 8 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team
उत्तर
We count the number by INDIRECT method of counting.
Number of ways to select a team of 6 people = 12C6
Number of teams with No doctor in any team = 8C6
Required number = 12C6 – 8C6
= 924 – 28
= 896
APPEARS IN
संबंधित प्रश्न
Find the value of 15C4
Find the value of `""^20"C"_16 - ""^19"C"_16`
Find r if `""^14"C"_(2"r"): ""^10"C"_(2"r" - 4)` = 143:10
If `""^"n""C"_("r" - 1)` = 6435, `""^"n""C"_"r"` = 5005, `""^"n""C"_("r" + 1)` = 3003, find `""^"r""C"_5`.
After a meeting, every participant shakes hands with every other participants. If the number of handshakes is 66, find the number of participants in the meeting.
Find the number of diagonals of an n-shaded polygon. In particular, find the number of diagonals when: n = 10
Find the number of diagonals of an n-shaded polygon. In particular, find the number of diagonals when: n = 12
Find n, if `""^(2"n")"C"_("r" - 1) = ""^(2"n")"C"_("r" + 1)`
Find x if `""^"n""P"_"r" = "x" ""^"n""C"_"r"`
find the value of `sum_("r" = 1)^4 ""^(21 - "r")"C"_4 + ""^17"C"_5`
Find the differences between the largest values in the following: `""^14"C"_r "and" ""^12"C"_r`
A committee of 10 persons is to be formed from a group of 10 women and 8 men. How many possible committees will have at least 5 women? How many possible committees will have men in the majority?
Find n if nCn–3 = 84
Find n and r if nPr = 720 and nCn–r = 120
If nPr = 1814400 and nCr = 45, find n+4Cr+3
If nCr–1 = 6435, nCr = 5005, nCr+1 = 3003, find rC5
After a meeting, every participant shakes hands with every other participants. If the number of handshakes is 66, find the number of participants in the meeting.
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 10
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 15
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when n = 8
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if four points are collinear
Find the number of triangles formed by joining 12 points if four points are collinear
A word has 8 consonants and 3 vowels. How many distinct words can be formed if 4 consonants and 2 vowels are chosen?
Find n if 23C3n = 23C2n+3
Find the differences between the greatest values in the following:
14Cr and 12Cr
Find the differences between the greatest values in the following:
15Cr and 11Cr
A question paper has two sections. section I has 5 questions and section II has 6 questions. A student must answer at least two question from each section among 6 questions he answers. How many different choices does the student have in choosing questions?
Select the correct answer from the given alternatives.
The number of arrangements of the letters of the word BANANA in which two N's do not appear adjacently
Answer the following:
A student finds 7 books of his interest but can borrow only three books. He wants to borrow the Chemistry part-II book only if Chemistry Part-I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
Answer the following:
30 objects are to be divided in three groups containing 7, 10, 13 objects. Find the number of distinct ways for doing so.
If `1/(8!) + 1/(7!) = x/(9!)`, than x is equal to ______.
What is the probability of getting a “FULL HOUSE” in five cards drawn in a poker game from a standard pack of 52-cards?
[A FULL HOUSE consists of 3 cards of the same kind (eg, 3 Kings) and 2 cards of another kind (eg, 2 Aces)]
Out of 7 consonants and 4 vowels, the number of words (not necessarily meaningful) that can be made, each consisting of 3 consonants and 2 vowels, is ______.