मराठी

By Using De MoiréS Theorem Obtain Tan 5θ in Terms of Tan θ and Show that 1 − 10 Tan 2 ( π 10 ) + 5 Tan 4 ( π 10 ) = 0 . - Applied Mathematics 1

Advertisements
Advertisements

प्रश्न

By using De Moivre's Theorem obtain tan 5θ in terms of tan θ and show that `1-10 tan^2(pi/10)+5tan^4(pi/10)=0`.

बेरीज

उत्तर

(cos5θ + isin5θ) = (cos θ + isin θ)5
= cos5θ + 5cos4θ isin θ + 10 cos3θ i2 sin2θ + 10 cos2θ i3 sin3θ + 5 cos θ
i4 sin4θ + i5 sin5θ
= cos5θ + 5cos4θ isin θ - 10 cos3θ sin2θ – 10i cos2θ sin3θ + 5 cosθ sin4θ + i sin5θ
= (cos5θ- 10 cos3θ sin2θ + 5 cosθ sin4θ) + i (5cos4θ sin θ – 10 cos2θ
sin3θ + sin5θ)
Equating both sides we get,
∴ cos5θ = cos5θ- 10 cos3θ sin2θ + 5 cosθ sin4θ
∴ sin5θ = 5cos4θ sin θ – 10 cos2θ sin3θ + sin5θ
But tan5θ = `sin^2theta/cos^5theta`

=`(5cos^4theta sintheta-10cos^2thetasin^3theta+sintheta)/(cos^5theta-10cos^3thetasin^2theta+5costheta sin^4theta)`

Dividing by cos 5θ
tan 5θ =`(5tan theta-10tan^2theta+tan^5theta)/(1-10tan^2theta+5tan^4theta)`

for deduction, put θ = `pi/10`

`cot 5x pi/10=(1-10tan^2  pi/10+5tan^4  pi/10)/` 

`therefore 1-10tan^2(pi/10)+5tan^4(pi/10)=0.`

Hence proved.

shaalaa.com
D’Moivre’S Theorem
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (December) CBCGS
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Course
Use app×