Advertisements
Advertisements
प्रश्न
By using De Moivre's Theorem obtain tan 5θ in terms of tan θ and show that `1-10 tan^2(pi/10)+5tan^4(pi/10)=0`.
उत्तर
(cos5θ + isin5θ) = (cos θ + isin θ)5
= cos5θ + 5cos4θ isin θ + 10 cos3θ i2 sin2θ + 10 cos2θ i3 sin3θ + 5 cos θ
i4 sin4θ + i5 sin5θ
= cos5θ + 5cos4θ isin θ - 10 cos3θ sin2θ – 10i cos2θ sin3θ + 5 cosθ sin4θ + i sin5θ
= (cos5θ- 10 cos3θ sin2θ + 5 cosθ sin4θ) + i (5cos4θ sin θ – 10 cos2θ
sin3θ + sin5θ)
Equating both sides we get,
∴ cos5θ = cos5θ- 10 cos3θ sin2θ + 5 cosθ sin4θ
∴ sin5θ = 5cos4θ sin θ – 10 cos2θ sin3θ + sin5θ
But tan5θ = `sin^2theta/cos^5theta`
=`(5cos^4theta sintheta-10cos^2thetasin^3theta+sintheta)/(cos^5theta-10cos^3thetasin^2theta+5costheta sin^4theta)`
Dividing by cos 5θ
tan 5θ =`(5tan theta-10tan^2theta+tan^5theta)/(1-10tan^2theta+5tan^4theta)`
for deduction, put θ = `pi/10`
`cot 5x pi/10=(1-10tan^2 pi/10+5tan^4 pi/10)/`
`therefore 1-10tan^2(pi/10)+5tan^4(pi/10)=0.`
Hence proved.