Advertisements
Advertisements
प्रश्न
Calculate the energy released by 1g of natural uranium assuming 200 MeV is released in each fission event and that the fissionable isotope 235U has an abundance of 0.7% by weight in natural uranium.
उत्तर
235 g of uranium contains 6.02 × 1023 atoms.
1 g of uranium = `1/235 xx 6.023 xx 10^23` atoms
∴ 0.7 g of uranium = `1/235 xx 6.023 xx 10^23 xx 0.007` atoms
1 atom gives 200 MeV.
∴ Total energy released = `(6.023 xx 10^23 xx 0.007 xx 200 xx 10^6 xx 1.6 xx 10^-19)/235 "J" = 5.74 xx 10^8 "J"`
APPEARS IN
संबंधित प्रश्न
Suppose, we think of fission of a `""_26^56"Fe"` nucleus into two equal fragments `""_13^28"Al"`. Is the fission energetically possible? Argue by working out Q of the process. Given `"m"(""_26^56 "Fe") = 55.93494 "u"` and `"m"(""_13^28 "Al") = 27.98191 "u"`.
The fission properties of `""_94^239"Pu"` are very similar to those of `""_92^235 "U"`. The average energy released per fission is 180 MeV. How much energy, in MeV, is released if all the atoms in 1 kg of pure `""_94^239 "Pu"` undergo fission?
A 1000 MW fission reactor consumes half of its fuel in 5.00 y. How much `""_92^235"U"` did it contain initially? Assume that the reactor operates 80% of the time, that all the energy generated arises from the fission of `""92^235"U"` and that this nuclide is consumed only by the fission process.
Calculate and compare the energy released by a) fusion of 1.0 kg of hydrogen deep within Sun and b) the fission of 1.0 kg of 235U in a fission reactor.
Suppose India had a target of producing by 2020 AD, 200,000 MW of electric power, ten percent of which was to be obtained from nuclear power plants. Suppose we are given that, on an average, the efficiency of utilization (i.e. conversion to electric energy) of thermal energy produced in a reactor was 25%. How much amount of fissionable uranium would our country need per year by 2020? Take the heat energy per fission of 235U to be about 200MeV.
In a typical fission reaction, the nucleus is split into two middle-weight nuclei of unequal masses. Which of the two (heavier or lighter) has greater kinetic energy? Which one has greater liner momentum?
If three helium nuclei combine to form a carbon nucleus, energy is liberated. Why can't helium nuclei combine on their own and minimise the energy?
The mass of a neutral carbon atom in ground state is
As compared to 12C atom, 14C atom has
The heavier nuclei tend to have larger N/Z ratio because
(a) a neutron is heavier than a proton
(b) a neutron is an unstable particle
(c) a neutron does not exert electric repulsion
(d) Coulomb forces have longer range compared to the nuclear forces.
As the mass number A increases, which of the following quantities related to a nucleus do not change?
A free neutron decays to a proton but a free proton does not decay to a neutron. This is because
Calculate the energy that can be obtained from 1 kg of water through the fusion reaction 2H + 2H → 3H + p. Assume that 1.5 × 10−2% of natural water is heavy water D2O (by number of molecules) and all the deuterium is used for fusion.
(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)
Distinguish between nuclear fission and fusion giving an example of each.