Advertisements
Advertisements
प्रश्न
Calculate the correlation coefficient from the following data:
∑X = 125, ∑Y = 100, ∑X2 = 650, ∑Y2 = 436, ∑XY = 520, N = 25
उत्तर
Given ∑X = 125, ∑Y = 100, ∑X2 = 650, ∑Y2 = 436, ∑XY = 520, N = 25
Correlation coefficient
r(x, y) = `("N"sum"XY" - (sum"X")(sum"Y"))/(sqrt("N"sum"X"^2 - (sum"X")^2) xx sqrt("N"sum"Y"^2 - (sum"Y")^2))`
= `(25(520) - (125)(100))/(sqrt(25(650) - (125)^2) xx sqrt(25(436) - (100)^2))`
= `(13000 - 12500)/(sqrt(16250 - 15625) xx sqrt(10900 - 10000))`
= `500/(sqrt625 xx sqrt900)`
= `500/((25)(30))`
= `500/750`
r = 0.667
APPEARS IN
संबंधित प्रश्न
In the following data one of the value of y is missing. Arithmetic means of x and y series are 6 and 8 respectively. `(sqrt(2) = 1.4142)`
x | 6 | 2 | 10 | 4 | 8 |
y | 9 | 11 | ? | 8 | 7 |
Estimate missing observation.
Calculate the correlation coefficient for the following data.
X | 5 | 10 | 5 | 11 | 12 | 4 | 3 | 2 | 7 | 1 |
Y | 1 | 6 | 2 | 8 | 5 | 1 | 4 | 6 | 5 | 2 |
Find the coefficient of correlation for the following:
Cost (₹) | 14 | 19 | 24 | 21 | 26 | 22 | 15 | 20 | 19 |
Sales (₹) | 31 | 36 | 48 | 37 | 50 | 45 | 33 | 41 | 39 |
The correlation coefficient is
The variable whose value is influenced (or) is to be predicted is called
Scatter diagram of the variate values (X, Y) give the idea about
Find the coefficient of correlation for the following data:
X | 35 | 40 | 60 | 79 | 83 | 95 |
Y | 17 | 28 | 30 | 32 | 38 | 49 |
A measure of the strength of the linear relationship that exists between two variables is called:
Define Correlation.
Calculate the Karl Pearson Correlation Co-efficient for the following data:
Demand for Product X : | 23 | 27 | 28 | 29 |
30 |
31 | 33 | 35 | 36 | 39 |
Sale of Product Y: | 18 | 22 | 23 | 24 | 25 | 26 | 28 | 29 | 30 | 32 |