Advertisements
Advertisements
प्रश्न
Check whether given sides are the sides of right-angled triangles, using Pythagoras theorem
9, 40, 41
उत्तर
Take a = 9, b = 40 and c = 41
Now a2 + b2 = 92 + 402
= 81 + 1600
= 1681
c2 = 412 = 1681
∴ a2 + b2 = c2
Yes, By the converse of Pythagoras theorem, the triangle with given measures is a right angled triangle.
APPEARS IN
संबंधित प्रश्न
In a ∆ABC, AD is the bisector of ∠BAC. If AB = 8 cm, BD = 6 cm and DC = 3 cm. The length of the side AC is
If the sides of a triangle are in the ratio 5 : 12 : 13 then, it is ________
The incentre is equidistant from all the vertices of a triangle
Check whether given sides are the sides of right-angled triangles, using Pythagoras theorem
8, 15, 17
Check whether given sides are the sides of right-angled triangles, using Pythagoras theorem
30, 40, 50
Check whether given sides are the sides of right-angled triangles, using Pythagoras theorem
24, 45, 51
The area of a rectangle of length 21 cm and diagonal 29 cm is __________
If a triangle having sides 8 cm, 15 cm and 17 cm, then state whether given triangle is right angled triangle or not
A rectangle having dimensions 35 m × 12 m, then what is the length of its diagonal?
In ∆LMN, l = 5, m = 13, n = 12 then complete the activity to show that whether the given triangle is right angled triangle or not.
*(l, m, n are opposite sides of ∠L, ∠M, ∠N respectively)
Activity: In ∆LMN, l = 5, m = 13, n = `square`
∴ l2 = `square`, m2 = 169, n2 = 144.
∴ l2 + n2 = 25 + 144 = `square`
∴ `square` + l2 = m2
∴By Converse of Pythagoras theorem, ∆LMN is right angled triangle.