Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
If A is skew-symmetric of order n and C is a column matrix of order n × 1, then CT AC is
पर्याय
an identity matrix of order n
an identity matrix of order 1
a zero matrix of order 1
an identity matrix of order 2
उत्तर
a zero matrix of order 1
APPEARS IN
संबंधित प्रश्न
Find the values of x, y and z from the following equation
`[(12, 3),(x, 3/2)] = [(y, z),(3, 5)]`
Find the values of x, y and z from the following equation
`[(x + y, 2),(5 + z, xy)] = [(6, 2),(5, 8)]`
If A = `[(1, 9),(3, 4),(8, -3)]`, B = `[(5, 7),(3, 3),(1, 0)]` then verify that A + B = B + A
If A = `[(1, 9),(3, 4),(8, -3)]`, B = `[(5, 7),(3, 3),(1, 0)]` then verify that A + (– A) = (– A) + A = 0
If A = `[(0, 4, 9),(8, 3, 7)]`, B = `[(7, 3, 8),(1, 4, 9)]` find the value of B – 5A
If A = `[(5, 2, 9),(1, 2, 8)]`, B = `[(1, 7),(1, 2),(5, -1)]` verify that (AB)T = BT AT
Transpose of a column matrix is
Construct an m × n matrix A = [aij], where aij is given by
aij = `|3"i" - 4"j"|/4` with m = 3, n = 4
Find the values of p, q, r, and s if
`[("p"^2 - 1, 0, - 31 - "q"^3),(7, "r" + 1, 9),(- 2, 8, "s" - 1)] = [(1, 0, -4),(7, 3/2, 9),(-2, 8, -pi)]`
If AT = `[(4, 5),(-1, 0),(2, 3)]` and B = `[(2, -1, 1),(7, 5, -2)]`, veriy the following
(A – B)T = AT – BT
If A is a 3 × 4 matrix and B is a matrix such that both ATB and BAT are defined, what is the order of the matrix B?
Find the matrix A such that `[(2, -1),(1, 0),(-3, 4)]"A"^"T" = [(-1, -8, -10),(1, 2, -5),(9, 22, 15)]`
Choose the correct alternative:
If aij = (3i – 2j) and A = [aij]3 × 2 is
Choose the correct alternative:
if A = `[(lambda, 1),(-1, -lambda)]`, then for what value of λ, A2 = 0 ?
Let det M denotes the determinant of the matrix M. Let A and B be 3 × 3 matrices with det A = 3 and det B = 4. Then the det (2AB) is
A matrix is an ordered:-
If the matrix 'A' is both symmetric and strew symmetric then.
Let A = `((1, -1, 0),(0, 1, -1),(0, 0, 1))` and B = 7A20 – 20A7 + 2I, where I is an identity matrix of order 3 × 3. If B = [bij], then b13 is equal to ______.
The number of matrices A = `[(a, b),(c, d)]`, where a, b, c, d ∈ {–1, 0, 1, 2, 3, ............, 10} such that A = A–1, is ______.