Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
The solution set of the following inequality |x − 1| ≥ |x − 3| is
पर्याय
[0, 2]
[2, ∞)
(0, 2)
(−∞, 2)
उत्तर
[2, ∞)
APPEARS IN
संबंधित प्रश्न
Find all values of x for which `(x^3(x - 1))/((x - 2)) > 0`
Find all values of x that satisfies the inequality `(2x - 3)/((x - 2)(x - 4)) < 0`
Solve `(x^2 - 4)/(x^2 - 2x - 15) ≤ 0`
Resolve the following rational expressions into partial fractions
`(3x + 1)/((x - 2)(x + 1))`
Resolve the following rational expressions into partial fractions
`x/((x^2 + 1)(x - 1)(x + 2))`
Resolve the following rational expressions into partial fractions
`x/((x - 1)^3`
Resolve the following rational expressions into partial fractions
`(x^3 + 2x + 1)/(x^2 + 5x + 6)`
Resolve the following rational expressions into partial fractions
`(6x^2 - x + 1)/(x^3 + x^2 + x + 1)`
Determine the region in the plane determined by the inequalities:
x ≤ 3y, x ≥ y
Determine the region in the plane determined by the inequalities:
y ≥ 2x, −2x + 3y ≤ 6
Determine the region in the plane determined by the inequalities:
3x + 5y ≥ 45, x ≥ 0, y ≥ 0
Determine the region in the plane determined by the inequalities:
2x + 3y ≤ 6, x + 4y ≤ 4, x ≥ 0, y ≥ 0
Determine the region in the plane determined by the inequalities:
x − 2y ≥ 0, 2x − y ≤ −2, x ≥ 0, y ≥ 0
Determine the region in the plane determined by the inequalities:
2x + y ≥ 8, x + 2y ≥ 8, x + y ≤ 6
Choose the correct alternative:
The solution of 5x − 1 < 24 and 5x + 1 > −24 is