Advertisements
Advertisements
प्रश्न
Compute: `(12/6)!`
उत्तर
`(12/6)!` = 2!
= 2 × 1
= 2
APPEARS IN
संबंधित प्रश्न
Evaluate: 8!
Evaluate: 10!
Evaluate: (10 – 6)!
Compute: `(9!)/(3! 6!)`
Compute: `(6! - 4!)/(4!)`
Compute: `(8!)/(6! - 4!)`
Write in terms of factorial.
5 × 6 × 7 × 8 × 9 × 10
Write in terms of factorial.
5 × 10 × 15 × 20
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 8, r = 6
Evaluate `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 10
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 8
Find n, if `"n"/(8!) = 3/(6!) + (1!)/(4!)`
Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`
Find n, if (n + 1)! = 42 × (n – 1)!
Find n, if (n + 3)! = 110 × (n + 1)!
Find n, if: `((17 - "n")!)/((14 - "n")!)` = 5!
Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5 : 3
Find n, if: `((2"n")!)/(7!(2"n" - 7)!) : ("n"!)/(4!("n" - 4)!)` = 24 : 1
Show that `((2"n")!)/("n"!)` = 2n (2n – 1)(2n – 3) ... 5.3.1
Simplify `((2"n" + 2)!)/((2"n")!)`
Simplify `(("n" + 3)!)/(("n"^2 - 4)("n" + 1)!)`
Simplify n[n! + (n – 1)!] + n2(n – 1)! + (n + 1)!
Simplify `("n" + 2)/("n"!) - (3"n" + 1)/(("n" + 1)!)`
Simplify `1/(("n" - 1)!) + (1 - "n")/(("n" + 1)!)`
Simplify `1/("n"!) - 3/(("n" + 1)!) - ("n"^2 - 4)/(("n" + 2)!)`
In how many ways can 10 examination papers be arranged so that the best and the worst papers never come together?
Select the correct answer from the given alternatives.
Find the number of triangles which can be formed by joining the angular points of a polygon of 8 sides as vertices.
If `((11 - "n")!)/((10 - "n")!) = 9,`then n = ______.
Let Tn denote the number of triangles which can be formed using the vertices of a regular polygon of n sides. If Tn + 1 – Tn = 21, then n is equal to ______.