Advertisements
Advertisements
प्रश्न
Consider the following statements.
(A) Free-electron density is different in different metals.
(B) Free-electron density in a metal depends on temperature.
Seebeck Effect is caused _____________ .
पर्याय
due to both A and B
due to A but not due to B
due to B but not due to A
neither due to A nor due to B
उत्तर
due to both A and B
In Seebeck Effect, a temperature difference between two dissimilar electrical conductors produces a potential difference across the junctions of the two different metals. The cause of this potential difference is the diffusion of free electrons from a high electron-density region to a low electron-density region. The free electron-density of the electrons is different in different metals and changes with change in temperature. Hence, both the statements are the causes of Seebeck Effect.
APPEARS IN
संबंधित प्रश्न
Define the term drift velocity.
What is its relation with relaxation time?
Estimate the average drift speed of conduction electrons in a copper wire of cross-sectional area 1.0 × 10−7 m2 carrying a current of 1.5 A. Assume the density of conduction electrons to be 9 × 1028 m−3
Why alloys like constantan and manganin are used for making standard resistors?
When electrons drift in a metal from lower to higher potential, does it mean that all the free electrons of the metal are moving in the same direction?
When a current is established in a wire, the free electrons drift in the direction opposite to the current. Does the number of free electrons in the wire continuously decrease?
A current of 1.0 A exists in a copper wire of cross-section 1.0 mm2. Assuming one free electron per atom, calculate the drift speed of the free electrons in the wire. The density of copper is 9000 kg m–3.
Consider a wire of length 4 m and cross-sectional area 1 mm2 carrying a current of 2 A. If each cubic metre of the material contains 1029 free electrons, find the average time taken by an electron to cross the length of the wire.
Obtain the expression for the current flowing through a conductor having number density of the electron n, area of cross-section A in terms of the drift velocity vd .
The position-time relation of a particle moving along the x-axis is given by x = a - bt + ct2 where a, band c are positive numbers. The velocity-time graph of the particle is ______.
When a current I is set up in a wire of radius r, the drift velocity is vd· If the same current is set up through a wire of radius 2 r, the drift velocity will be:
At room temperature, copper has free electron density of 8.4 × 1028 per m3. The copper conductor has a cross-section of l0−6 m2 and carries a current of 5.4 A. The electron drift velocity in copper is:
An electric bulb.is rated 220 v and 100 watt power consumed by it when operated on 'no volt is:-
The drift velocity of a free electron inside a conductor is ______
Is the momentum conserved when charge crosses a junction in an electric circuit? Why or why not?
Derive an expression for resistivity of a conductor in terms of the number density of charge carriers in the conductor and relaxation time.
The potential difference applied across a given conductor is doubled. How will this affect (i) the mobility of electrons and (ii) the current density in the conductor? Justify your answers.
The drift velocity of electrons in a conductor connected to a battery is given by vd = `(−"eE" τ)/"m"`. Here, e is the charge of the electron, E is the electric field, τ is the average time between collisions and m is the mass of the electron.
Based on this, answer the following:
- How does the drift velocity change with a change in the potential difference across the conductor?
- A copper wire of length 'l' is connected to a source. If the copper wire is replaced by another copper wire of the same area of cross-section but of length '4l', how will the drift velocity change? Explain your answer.