मराठी

Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation cos–1 (x) – 2sin–1(x) = cos–1 (2x) is equal to ______. -

Advertisements
Advertisements

प्रश्न

Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation cos–1 (x) – 2sin–1(x) = cos–1 (2x) is equal to ______.

पर्याय

  • 0

  • 1

  • `1/2`

  • `-1/2`

MCQ
रिकाम्या जागा भरा

उत्तर

Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation cos–1 (x) – 2sin–1(x) = cos–1 (2x) is equal to 0.

Explanation:

We are given that

cos–1 x – 2 sin–1 x = cos–1 2x

`\implies cos^-1x - 2(π/2 - cos^-1x) = cos^-1 2x`

`\implies` cos–1 x – π + 2cos–1 x = cos–1 2x

`\implies` 3cos–1 x = π + cos–1 2x  ...(i)

`\implies` cos(3cos–1 x) = cos(π + cos–1 2x)  ...[∵ 3cos–1 x = cos–1 (4x3 – 3x)]

`\implies` 4x3 – 3x = –2x

`\implies` 4x3 = x

`\implies` x = `0, ±1/2`

Here all values of x satisfy the equation (A)

∴ Sum of all the solutions of the equation = `-1/2 + 1/2 + 0` = 0

shaalaa.com
Principal Value of Inverse Trigonometric Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×