Advertisements
Advertisements
प्रश्न
Construct a 3 × 3 matrix whose elements are given by aij = `("i" + "j")^3/3`
उत्तर
a11 = `(1 + 1)^3/3 = 2^3/3 = 8/3`
a12 = `(1 + 2)^3/3 = 27/3` = 9
a13 = `(1 + 3)^3/3 = 64/3 = 64/3`
a21 = `(2 + 1)^3/3 = 27/3` = 9
a22 = `(2 + 2)^3/3 = 64/3 = 64/3`
a23 = `(2 + 3)^3/3 = 125/3 = 125/3`
a31 = `(3 + 1)^3/3 = 64/3 = 64/3`
a32 = `(3 + 2)^3/3 = 125/3 = 125/3`
a33 = `(3 + 3)^3/3 = 216/3` = 72
The required matrix A = `[(8/3, 9, 64/3),(9, 64/3, 125/3),(64/3, 125/3, 72)]`
APPEARS IN
संबंधित प्रश्न
If A = `[(1, 9),(3, 4),(8, -3)]`, B = `[(5, 7),(3, 3),(1, 0)]` then verify that A + (– A) = (– A) + A = 0
Find the non-zero values of x satisfying the matrix equation
`x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]`
If A = `[(5, 2, 9),(1, 2, 8)]`, B = `[(1, 7),(1, 2),(5, -1)]` verify that (AB)T = BT AT
If `cos theta [(cos theta, sin theta),(-sin theta, cos theta)] + sin theta[(x, -cos theta),(cos theta, x)]` = I2, find x.
Consider the matrix Aα = `[(cos alpha, - sin alpha),(sin alpha, cos alpha)]` Find all possible real values of α satisfying the condition `"A"_alpha + "A"_alpha^"T"` = I
If A and B are symmetric matrices of same order, prove that AB + BA is a symmetric matrix
If A and B are symmetric matrices of same order, prove that AB – BA is a skew-symmetric matrix
Choose the correct alternative:
If the square of the matrix `[(alpha, beta),(γ, - alpha)]` is the unit matrix of order 2, then α, β, and γ should
A matrix is an ordered:-
The number of matrices A = `[(a, b),(c, d)]`, where a, b, c, d ∈ {–1, 0, 1, 2, 3, ............, 10} such that A = A–1, is ______.