Advertisements
Advertisements
प्रश्न
Daily income for a group of 100 workers are given below:
Daily income (in₹) | 0 – 50 | 50 – 100 | 100 – 150 | 150 – 200 | 200 – 250 |
No. of persons | 7 | ? | 25 | 30 | ? |
P30 for this group is ₹ 110. Calculate the missing frequencies.
उत्तर
Let a and b be the missing frequencies of the class 50 – 100 and class 200 – 250 respectively.
We construct the less than cumulative frequency table as given below:
Daily income (in ₹) |
No. of persons (f) |
Less than cumulative frequency (c.f.) |
0 – 50 | 7 | 7 |
50 – 100 | a | 7 + a |
100 – 150 | 25 | 32 + a ← P30 |
150 – 200 | 30 | 62 + a |
200 – 250 | b | 62 + a + b |
Total | 62 + a + b |
Here, N = 62 + a + b
Since, N = 100
∴ 62 + a+ b = 100
∴ a + b = 38 ..........(i)
Given, P30 = 110
∴ P30 lies in the class 100 – 150.
∴ L = 100, h = 50, f = 25, `(30"N")/100= (30 xx 100)/100` = 30, c.f. = 7 + a
∴ P30 = `"L"+"h"/"f"((30"N")/100-"c.f.")`
∴ 110 = `100 + 50/25[30 - (7 + "a")]`
∴ 110 – 100 = 2(30 – 7 – a)
∴ 10 = 2(23 – a)
∴ `10/2` = 23 – a
∴ 5 = 23 – a
∴ a = 23 – 5
∴ a = 18
Substituting the value of a in equation (i), we get
18 + b = 38
∴ b = 38 – 18
∴ b = 20
∴ 18 and 20 are the missing frequencies of the class 50 – 100 and class 200 – 250 respectively.
APPEARS IN
संबंधित प्रश्न
Calculate D6 and P85 for the following data:
79, 82, 36, 38, 51, 72, 68, 70, 64, 63.
Calculate 2nd decide and 65th percentile for the following:
x | 80 | 100 | 120 | 145 | 200 | 280 | 310 | 380 | 400 | 410 |
f | 15 | 18 | 25 | 27 | 40 | 25 | 19 | 16 | 8 | 7 |
From the following data calculate the rent of 15th, 65th and 92nd house.
House rent (in ₹) | 11000 | 12000 | 13000 | 15000 | 14000 | 16000 | 17000 | 18000 |
No. of houses | 25 | 17 | 13 | 14 | 15 | 8 | 6 | 2 |
The following frequency distribution shows the weight of students in a class:
Weight (in Kg) | 40 | 45 | 50 | 55 | 60 | 65 |
Number of Students | 15 | 40 | 29 | 21 | 10 | 5 |
(a) Find the percentage of students whose weight is more than 50 kg.
(b) If the weight column provided is of mid values then find the percentage of students whose weight is more than 50 kg.
Calculate D4 and P48 from the following data:
Mid value | 2.5 | 7.5 | 12.5 | 17.5 | 22.55 | Total |
Frequency | 7 | 18 | 25 | 30 | 20 | 100 |
Calculate D9 and P20 of the following distribution.
Length (in inches) | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 | 100 – 120 |
No. of units | 1 | 14 | 35 | 85 | 90 | 15 |
Weekly wages for a group of 100 persons are given below:
Wages (in ₹) | 0 – 500 | 500 – 1000 | 1000 – 1500 | 1500 – 2000 | 2000 – 2500 |
No. of persons | 7 | ? | 25 | 30 | ? |
D3 for this group is ₹ 1100 Calculate the missing frequencies.
In a particular factory, workers produce various types of output units.
The following distribution was obtained.
Output units Produced | No. of workers |
70 – 74 | 40 |
75 – 79 | 45 |
80 – 84 | 50 |
85 – 89 | 60 |
90 – 94 | 70 |
95 – 99 | 80 |
100 – 104 | 100 |
Find the percentage of workers who have produced less than 82 output units.
The data gives number of accidents per day on a railway track. Compute Q2, P17, and D7.
4, 2, 3, 5, 6, 3, 4, 1, 2, 3, 2, 3, 4, 3, 2.
The distribution of daily sales of shoes (size-wise) for 100 days from a certain shop is:
Size of shoes | 2 | 4 | 3 | 5 | 7 | 6 | 8 |
No. of days | 14 | 20 | 13 | 19 | 13 | 13 | 8 |
Compute Q2, D1, and P95.
In the frequency distribution of families given below, the number of families corresponding to expenditure group 2000 - 4000 is missing from the table. However value of 25th percentile is 2880. Find the missing frequency.
Weekly Expenditure (₹1000) | 0 – 2 | 2 – 4 | 4 – 6 | 6 – 8 | 8 – 10 |
No. of families | 14 | ? | 39 | 7 | 15 |
Calculate Q1, D6, and P15 for the following data:
Mid value | 25 | 75 | 125 | 175 | 225 | 275 |
Frequency | 10 | 70 | 80 | 100 | 150 | 90 |
The distribution of a sample of students appearing for a C.A. examination is:
Marks | 0 – 100 | 100 – 200 | 200 – 300 | 300 – 400 | 400 – 500 | 500 – 600 |
No. of students | 130 | 150 | 190 | 220 | 280 | 130 |
Help C.A. institute to decide cut-off marks for qualifying an examination when 3% of students pass the examination.
Find Q1, D6, and P78 for the following data:
C.I. | 8 – 8.95 | 9 – 9.95 | 10 – 10.95 | 11 – 11.95 | 12 – 12.95 |
f | 5 | 10 | 20 | 10 | 5 |