Advertisements
Advertisements
प्रश्न
Discuss the continuity of the f(x) at the indicated points: f(x) = | x − 1 | + | x + 1 | at x = −1, 1.
बेरीज
उत्तर
Given:
\[f\left( x \right) = \left| x - 1 \right| + \left| x + 1 \right|\]
We have
(LHL at x = −1) =
\[\lim_{x \to - 1^-} f\left( x \right) = \lim_{h \to 0} f\left( - 1 - h \right)\]
\[= \lim_{h \to 0} \left[ \left| - 1 - h - 1 \right| + \left| - 1 - h + 1 \right| \right] = 2 + 0 = 2\]
(RHL at x = −1) =
\[\lim_{x \to - 1^+} f\left( x \right) = \lim_{h \to 0} f\left( - 1 + h \right)\]
\[= \lim_{h \to 0} \left[ \left| - 1 + h - 1 \right| + \left| - 1 + h + 1 \right| \right] = 2 + 0 = 2\]
Also,
\[f\left( - 1 \right) = \left| - 1 - 1 \right| + \left| - 1 + 1 \right| = \left| - 2 \right| = 2\]
Now,
(LHL at x = 1) =
\[\lim_{x \to 1^-} f\left( x \right) = \lim_{h \to 0} f\left( 1 - h \right) = \lim_{h \to 0} \left( \left| 1 - h - 1 \right| + \left| 1 - h + 1 \right| \right) = 0 + 2 = 2\]
(RHL at x =1) =
MathML
\[\lim_{x \to 1^+} f\left( x \right) = \lim_{h \to 0} f\left( 1 + h \right) = \lim_{h \to 0} \left( \left| 1 + h - 1 \right| + \left| 1 + h + 1 \right| \right) = 0 + 2 = 2\]
Also
\[f\left( 1 \right) = \left| 1 + 1 \right| + \left| 1 - 1 \right| = 2\]
\[\lim_{x \to - 1^-} f\left( x \right) = \lim_{x \to - 1^+} f\left( x \right) = f\left( - 1 \right) \text{ and} \lim_{x \to 1^-} f\left( x \right) = \lim_{x \to 1^+} f\left( x \right) = f\left( 1 \right)\]
Hence,
\[f\left( x \right)\]is continuous at
\[x = - 1, 1\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?