Advertisements
Advertisements
प्रश्न
Evaluate:
`int "dx"/(sin "x" + sin 2"x")`
उत्तर
Let, I = `int "dx"/(sin "x" + sin 2"x")`
= `int "dx"/(sin "x" + 2 sin "x" cos "x")`
= `int "dx"/(sin "x"(1 + 2 cos "x"))`
= `int (sin "x dx")/(sin^2 "x"(1 + 2 cos "x"))`
= `int (sin "x dx")/((1 - cos^2 "x")(1 + 2 cos "x"))`
= `int (sin "x dx")/((1 + cos "x")(1 - cos "x")(1 + 2 cos "x"))`
Let cos x = t,
∴ − sin x dx = dt
⇒ I = `-int "dt"/((1 - "t")(1 + "t") (1 + 2"t"))`
Now, let
`(-1)/((1 - "t")(1 + "t")(1 + 2"t")) = "A"/((1 - "t")) + "B"/((1 + "t")) + "C"/((1 + 2"t"))`
− 1 = A(1 + t)(1 + 2t) + B(1 − t)(1 + 2t) + C(1 − t2)
− 1 = A(1 + 3t + 2t2) + B(1 + t − 2t2) + C(1 − t2)
− 1 = (2A − 2B − C)t2 + (3A + B)t + A + B + C
On comparing the coefficient of t2, t and constants on both sides
2A − 2B − C = 0 ........(i)
3A + B = 0 .........(ii)
A + B + C = − 1 ..........(iii)
From equations (i), (ii) and (iii), we get
A = `-1/6`
B = `1/2`
and C = `-4/3`
∴ I = `int [(-1/6)/((1 - "t")) + (1/2)/((1 + "t")) + (-4/3)/((1 + 2"t"))] "dt"`
= `-1/6 log (1 - "t") + 1/2 log (1 + "t") - 4/(3 xx 2) log (1 + 2"t") + "c"`
= `-1/6 log (1 - "t") + 1/2 log (1 + "t") - 2/3 log (1 + 2"t") + "c"`
∴ I = `-1/6 log (1 - cos "x") + 1/2 log (1 + cos "x") - 2/3 log (1 + 2 cos "x") + "c"`