मराठी

Evaluate the following: d∫xx+1dx (Hint: Put x = z) - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int x/(sqrt(x) + 1) "d"x`  (Hint: Put  `sqrt(x)` = z)

बेरीज

उत्तर

I = `int x/(sqrt(x) + 1) "d"x` 

Put  `sqrt(x)` = t

⇒ x = t2

∴ dx = 2t . dt

∴ I = `int ("t" * 2"t" * "dt")/("t" + 1)`

= `2int "t"^3/("t" + 1) "dt"`

= `2int ("t"^3 + 1 - 1)/("t" + 1) "dt"`

= `2int ("t"^3 + 1)/("t" + 1) "dt" - 2int 1/("t" + 1) "dt"`

= `2int (("t" + 1)("t"^2 - "t" + 1))/("t" + 1) "dt" - 2int 1/("t" + 1) "dt"`

= `2int ("t"^2 - "t" + 1) "dt" - 2int 1/("t" + 1) "dt"`

= `2["t"^3/3 - "t"^2/2 + "t"] - 2 log |"t" + 1|`

= `2[x^(3/2)/3 - x/2 + sqrt(x)] - 2 log |sqrt(x) + 1| + "C"`

= `2[(xsqrt(x))/3 - x/2 + sqrt(x) - log |sqrt(x) + 1|] + "C"`

Hence, I = `2[(xsqrt(x))/3 - x/2 + sqrt(x) - log |sqrt(x) + 1|] + "C"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 10 | पृष्ठ १६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×