Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int x/(sqrt(x) + 1) "d"x` (Hint: Put `sqrt(x)` = z)
उत्तर
I = `int x/(sqrt(x) + 1) "d"x`
Put `sqrt(x)` = t
⇒ x = t2
∴ dx = 2t . dt
∴ I = `int ("t" * 2"t" * "dt")/("t" + 1)`
= `2int "t"^3/("t" + 1) "dt"`
= `2int ("t"^3 + 1 - 1)/("t" + 1) "dt"`
= `2int ("t"^3 + 1)/("t" + 1) "dt" - 2int 1/("t" + 1) "dt"`
= `2int (("t" + 1)("t"^2 - "t" + 1))/("t" + 1) "dt" - 2int 1/("t" + 1) "dt"`
= `2int ("t"^2 - "t" + 1) "dt" - 2int 1/("t" + 1) "dt"`
= `2["t"^3/3 - "t"^2/2 + "t"] - 2 log |"t" + 1|`
= `2[x^(3/2)/3 - x/2 + sqrt(x)] - 2 log |sqrt(x) + 1| + "C"`
= `2[(xsqrt(x))/3 - x/2 + sqrt(x) - log |sqrt(x) + 1|] + "C"`
Hence, I = `2[(xsqrt(x))/3 - x/2 + sqrt(x) - log |sqrt(x) + 1|] + "C"`
APPEARS IN
संबंधित प्रश्न
Find `int dx/(5 - 8x - x^2)`
Find `int (cos theta)/((4 + sin^2 theta)(5 - 4 cos^2 theta)) d theta`
Evaluate `int (cos 2x + 2sin^2x)/(cos^2x) dx`
Evaluate : \[\int\limits_0^\frac{\pi}{4} \tan x dx\] .
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x}dx\] .
Evaluate: `int ("sin 2x")/((1 + "sin x")(2 + "sin x")) "dx"`
Prove that `int_0^"a" "f(x)" "dx" = int_0^"a" "f"("a"-"x")"dx"` ,and hence evaluate `int_0^1 "x"^2(1 - "x")^"n""dx"`.
Evaluate the following:
`int sqrt(("a" + x)/("a" - x)) "d"x`
Evaluate the following:
`int x^(1/2)/(1 + x^(3/4)) "d"x` (Hint: Put `sqrt(x)` = z4)
Evaluate:
`∫ log_10 "x dx"`
The value of the integral `int_(-1)^2 [x] dx` is
`int (sin^8x - cos^8x)/(1 - 2sin^2x cos^2x) dx` is equal to
`int_0^oo (dx)/((x^2 + a^2)(x^2 + b^2))` is
Evaluate: `int_0^(pi/2) cosx/(( cos x/2 + sin x/2)^3) dx`
If `d/dx f(x) = 2x + 3/x` and f(1) = 1, then f(x) is ______.