मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Evaluate the following limits, if necessary use l’Hôpital Rule: If an initial amount A0 of money is invested at an interest rate r compounded n times a year, the value of the investment after - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits, if necessary use l’Hôpital Rule:

If an initial amount A0 of money is invested at an interest rate r compounded n times a year, the value of the investment after t years is A = `"A"_0 (1 + "r"/"n")^"nt"`. If the interest is compounded continuously, (that is as n → ∞), show that the amount after t years is A = A0ert 

बेरीज

उत्तर

A = `"A"_0 (1 + "r"/"n")^"nt"`  ......[Ais a constant]

Let y = `lim_(x -> oo) (1 + "r"/"n")^"nt"`

Taking log on both sides,

log y = `lim_(x -> oo) "nt" log(1 + "r"/"n")`  ......`[oo xx 0  "Indeterminate form"]`

= `lim_("n" -> oo) (log(1 + "r"/"n"))/(1/"nt")` ........`[0/0  "indeterminate form"]`

Applying L’ Hôpital’s Rule

= `lim_("n" -> oo) ((1/(1 + "r"/"n"))(- "r"/"n"^2))/(- 1/("n"^2"t"))`

log y = `lim_("n" -> oo) "rt"/(1 + "r"/"n")` = rt

Exponentating, we get

y = `"e"^pi`

We have A = `"A"_0 (1 + "r"/"n")^"nt"`

∴ A = `"A"_0  "e"^pi`

Hence Proved.

shaalaa.com
Indeterminate Forms
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Applications of Differential Calculus - Exercise 7.5 [पृष्ठ ३२]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 7 Applications of Differential Calculus
Exercise 7.5 | Q 12 | पृष्ठ ३२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×