मराठी

Explain Why To Keep a Piece of Paper Horizontal, You Should Blow Over, Not Under, It - Physics

Advertisements
Advertisements

प्रश्न

Explain why To keep a piece of paper horizontal, you should blow over, not under, it

उत्तर १

When air is blown under a paper, the velocity of air is greater under the paper than it is above it. As per Bernoulli’s principle, atmospheric pressure reduces under the paper. This makes the paper fall. To keep a piece of paper horizontal, one should blow over it. This increases the velocity of air above the paper. As per Bernoulli’s principle, atmospheric pressure reduces above the paper and the paper remains horizontal.

shaalaa.com

उत्तर २

When we blow over the piece of paper, the velocity of air increases. As a result, the pressure on it decreases in accordance with the Bernoulli’s theorem whereas the pressure below remains the same (atmospheric pressure). Thus, the paper remains horizontal.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Mechanical Properties of Fluids - Exercises [पृष्ठ २६८]

APPEARS IN

एनसीईआरटी Physics [English] Class 11
पाठ 10 Mechanical Properties of Fluids
Exercises | Q 4.1 | पृष्ठ २६८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Can Bernoulli’s equation be used to describe the flow of water through a rapid in a river? Explain.


In a test experiment on a model aeroplane in a wind tunnel, the flow speeds on the upper and lower surfaces of the wing are 70 m s–1and 63 m s–1 respectively. What is the lift on the wing if its area is 2.5 m2? Take the density of air to be 1.3 kg m–3.


In deriving Bernoulli’s equation, we equated the work done on the fluid in the tube to its change in the potential and kinetic energy. (a) What is the largest average velocity of blood flow in an artery of diameter 2 × 10–3 m if the flow must remain laminar? (b) Do the dissipative forces become more important as the fluid velocity increases? Discuss qualitatively.


A Gipsy car has a canvass top. When the car runs at high speed, the top bulges out. Explain.


Suppose the tube in the previous problem is kept vertical with A upward but the other conditions remain the same. the separation between the cross sections at A and B is 15/16 cm. Repeat parts (a), (b) and (c) of the previous problem. Take g = 10 m/s2.


A large number of liquid drops each of radius 'a' are merged to form a single spherical drop of radius 'b'. The energy released in the process is converted into kinetic energy of the big drop formed. The speed of the big drop is [p = density of liquid, T = surface tension of liquid] ____________.


When one end of the capillary is dipped in water, the height of water column is 'h'. The upward force of 119 dyne due to surface tension is balanced by the force due to the weight of water column. The inner circumference of the capillary is (Surface tension of water= 7 x 10-2 N/m) ____________.


The working of venturimeter is based on ______.


In the widest part of the horizontal pipe, oil is flowing at a rate of 2 m/sec. The speed (in m/s) of the flow of oil in the narrow part of the tube if the pressure difference in the broad and narrow parts of the pipe is 0.25 ρoilg, is ______ m/s.


Explain the working of an atomizer.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×