Advertisements
Advertisements
प्रश्न
Explain why an optical pyrometer (for measuring high temperatures) calibrated for an ideal black body radiation gives too low a value for the temperature of a red hot iron piece in the open but gives a correct value for the temperature when the same piece is in the furnace
उत्तर १
An optical pyrometer calibrated for an ideal black body radiation gives too low a value for temperature of a red hot iron piece kept in the open.
Black body radiation equation is given by:
`E = sigma(T^4 - T_0^4)`
Where,
E = Energy radiation
T = Temperature of optical pyrometer
To = Temperature of open space
σ = Constant
Hence, an increase in the temperature of open space reduces the radiation energy.
When the same piece of iron is placed in a furnace, the radiation energy, E = σ T4
उत्तर २
An optical pyrometer is based on the principle that the brightness of a glowing surface of a body depends upon its temperature. Therefore, if the temperature of the body is less than 600°C, the image formed by the optical pyrometer is not brilliant and we do not get the reliable result. It is for this reason that the pyrometer gives a very low value for the temperature of red hot iron in the open.
APPEARS IN
संबंधित प्रश्न
Explain why the earth without its atmosphere would be inhospitably cold
Why does blowing over a spoonful of hot tea cools it? Does evaporation play a role? Does radiation play a role?
Two identical metal balls one at T1 = 300 K and the other at T2 = 600 K are kept at a distance of 1 m in a vacuum. Will the temperatures equalise by radiation? Will the rate of heat gained by the colder sphere be proportional to `t_2^4 - t_1^4` as may be expected from the Stefan's law?
Standing in the sun is more pleasant on a cold winter day than standing in shade. Is the temperature of air in the sun considerably higher than that of the air in shade?
A solid at temperature T1 is kept in an evacuated chamber at temperature T2 > T1. The rate of increase of temperature of the body is proportional to
A solid sphere and a hollow sphere of the same material and of equal radii are heated to the same temperature.
(a) Both will emit equal amount of radiation per unit time in the biginning
(b) Both will absorb equal amount of radiation from the surrounding in the biginning.
(c) The initial rate of cooling (dT/dt) will be the same for the two spheres
(d) The two spheres will have equal temperature at any instant
The left end of a copper rod (length = 20 cm, area of cross section = 0.20 cm2) is maintained at 20°C and the right end is maintained at 80°C. Neglecting any loss of heat through radiation, find (a) the temperature at a point 11 cm from the left end and (b) the heat current through the rod. Thermal conductivity of copper = 385 W m−1°C−1.
Assume that the total surface area of a human body is 1.6 m2 and that it radiates like an ideal radiator. Calculate the amount of energy radiated per second by the body if the body temperature is 37°C. Stefan constant σ is 6.0 × 10−8 W m−2 K−4.
A solid aluminium sphere and a solid copper sphere of twice the radius are heated to the same temperature and are allowed to cool under identically surrounding temperatures. Assume that the emissivity of both the spheres in the same. Find the ratio of (a) the rate of heat loss from the aluminium sphere to the rate of heat loss from the copper sphere and (b) the rate of fall of temperature of the aluminium sphere to the rate of fall of temperature of the copper sphere. The specific heat capacity of aluminium = 900 J kg−1°C−1 and that of copper = 390 J kg−1°C−1. The density of copper = 3.4 times the density of aluminium.
A cylindrical rod of length 50 cm and cross sectional area 1 cm2 is fitted between a large ice chamber at 0°C and an evacuated chamber maintained at 27°C as shown in the figure. Only small portions of the rod are inside the chamber and the rest is thermally insulated from the surrounding. The cross section going into the evacuated chamber is blackened so that it completely absorbs any radiation falling on it. The temperature of the blackened end is 17°C when steady state is reached. Stefan constant σ = 6 × 10−8 W m−2 K−4. Find the thermal conductivity of the material of the rod.