Advertisements
Advertisements
प्रश्न
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.
\[\left( \frac{2}{3} \right)^{- 2}\]
बेरीज
उत्तर
We know that
\[a^{- n} = \frac{1}{a^n}\]
`(2/3)^(-2)=(3/2)^(2)=9/4`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Evaluate.
3−2
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.
\[\frac{1}{3^{- 2}}\]
Simplify:
\[\left( 3^{- 1} \times 4^{- 1} \right)^{- 1} \times 5^{- 1}\]
Write the following in exponential form:
\[\left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1} \times \left( \frac{3}{2} \right)^{- 1}\]
Simplify:
\[\left( 3^2 - 2^2 \right) \times \left( \frac{2}{3} \right)^{- 3}\]
Simplify:
\[\left\{ \left( \frac{1}{2} \right)^{- 1} \times ( - 4 )^{- 1} \right\}^{- 1}\]
By what number should (−15)−1 be divided so that the quotient may be equal to (−5)−1?
\[\left( \frac{- 1}{5} \right)^3 \div \left( \frac{- 1}{5} \right)^8\] is equal to
For a non-zero rational number a, a7 ÷ a12 is equal to
Find the multiplicative inverse of the following.
2– 4