Advertisements
Advertisements
प्रश्न
Express the following rational numbers with a negative exponent:
\[\left\{ \left( \frac{3}{2} \right)^4 \right\}^{- 3}\]
बेरीज
उत्तर
\[ \left\{ \left( \frac{3}{2} \right)^4 \right\}^{- 3} \]
\[ = \left( \frac{3}{2} \right)^{- 12} \left[ \because \left( a^m \right)^n = a^{mn} \right]\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Evaluate.
`(1/2)^(-5)`
Evaluate.
`{(1/3)^(-1) - (1/4)^(-1)}^(-1)`
Express the following as a rational number of the form \[\frac{p}{q},\] where p and q are integers and q ≠ 0.
2−3
Express the following as a rational number in the form \[\frac{p}{q}:\]
6−1
Simplify:
\[\left\{ 5^{- 1} \div 6^{- 1} \right\}^3\]
Simplify:
\[\left\{ 3^{- 1} \times 4^{- 1} \right\}^{- 1} \times 5^{- 1}\]
Simplify:
\[\left\{ \left( \frac{2}{3} \right)^2 \right\}^3 \times \left( \frac{1}{3} \right)^{- 4} \times 3^{- 1} \times 6^{- 1}\]
\[\left( \frac{- 1}{5} \right)^3 \div \left( \frac{- 1}{5} \right)^8\] is equal to
Find the value of `(1/2)^(-2)+(1/3)^(-2)+(1/4)^(-2)`
The multiplicative inverse of `(3/2)^2` is not equal to `(2/3)^-2`.