Advertisements
Advertisements
प्रश्न
Express the complex number `(1+sqrt3i)^2/(sqrt3 -i` in the form of a + ib. Hence, find the modulus and argument of the complex number.
बेरीज
उत्तर
Let, z = `(1+sqrt3i)^2/((sqrt3 -i))`
= `(1+3i^2 + 2sqrt3 i )/((sqrt3- i))`
= `(1- 3 + 2sqrt3 i )/(sqrt3- i)`
= `(-2+2sqrt3 i)/ (sqrt3- i) xx ( sqrt3 + i)/ (sqrt3 + i)`
= `(-2 sqrt3 + 6i - 2i + 2sqrt3 i^2)/(3-i^2)`
= `(-4 sqrt3 + 4i)/(3 + 1)`
= `(4 (-sqrt3 +i))/(4)`
z = - `sqrt3 + i`
Here, a = ` - sqrt3` , b = 1
Now, Modulus, | z | = `sqrt( a^2 + b^2)`
= `sqrt(( -sqrt3)^2 + (1)^2)`
= `sqrt(3 + 1) = sqrt(4)`
= 2
Argurement = - `π + tan^-1 |(b)/(a)|`
= - `π + tan^-1 |(1)/-sqrt(3)|`
= `-π + tan^- 1 1/sqrt3`
= -π + `(π)/(6)`
= - `(5π)/(6)`
shaalaa.com
Applications of Integrations - Application of Integrals - Modulus Function
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?