Advertisements
Advertisements
प्रश्न
Factorise : 5 - (3a2 - 2a) (6 - 3a2 + 2a)
उत्तर
5 - (3a2 - 2a) (6 - 3a2 + 2a)
= 5 - ( 3a2 - 2a )[ 6 - ( 3a2 - 2a )]
Assume that 3a2 - 2a = x
Therefore,
5 - ( 3a2 - 2a )( 6 - 3a2 + 2a )
= 5 - x( 6 - x )
= 5 - 6x + x2
= 5( 1 - x ) - x( 1 - x )
= ( 5 - x )( 1 - x )
= ( x - 5 )( x - 1 )
= ( 3a2 - 2a - 5 )( 3a2 - 2a - 1 )
= ( 3a2 - 5a + 3a -5 )(3a2 - 3a + a - 1 )
= [ a( 3a - 5 ) + 1( 3a - 5)][3a( a - 1) + 1( a - 1)]
= ( 3a - 5 )( a + 1 )( 3a + 1 )( a - 1 )
APPEARS IN
संबंधित प्रश्न
Factorise : a2 - 3a - 40
Factorise : `1/35 + 12/35a + a^2`
Find trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise, if possible.
2x2 + 2x - 75
Find trinomial (quadratic expression), given below, find whether it is factorisable or not. Factorise, if possible.
3x2 + 4x - 10
Factorise : 7√2x2 - 10x - 4√2
Factorise the following by splitting the middle term:
15a2 - 14a - 16
Factorise the following:
x2y2 + 15xy - 16
Factorise the following:
`6sqrt(3)x^2 - 19x + 5sqrt(3)`
Factorise the following:
(3a - 2b)2 +3(3a - 2b) - 10
Factorise the following:
(p2 + p)2 - 8(p2 + p) + 12