Advertisements
Advertisements
प्रश्न
Factorise : (a2 + b2 - 4c2)2 - 4a2b2
उत्तर
(a2 + b2 - 4c2)2 - 4a2b2
= ( a2 + b2 - 4c2 )2 - ( 2ab )2
= ( a2 + b2 - 4c2 - 2ab )( a2 + b2 - 4c2 + 2ab ) [ ∵ a2 - b2 = ( a + b )( a - b )]
= ( a2 + b2 - 2ab - 4c2 )( a2 + b2 + 2ab - 4c2 )
= [ ( a - b )2 - ( 2c )2 ][ ( a + b )2 - ( 2c )2]
= ( a - b + 2c )( a - b - 2c )( a + b + 2c )( a + b - 2c )
APPEARS IN
संबंधित प्रश्न
Factorise : 3a5 - 108a3
Factorise : (a + b)3 - a - b
Factorise : 9a2 + 3a - 8b - 64b2
Factorise : a2 - b2 - (a + b) 2
Factorise the following by the difference of two squares:
x6 - 196
Factorise the following by the difference of two squares:
625 - b2
Factorise the following by the difference of two squares:
x2 + y2 - z2 - 2xy
Factorise the following:
25(x - y)2 - 49(c - d)2
Factorise the following:
a2 + b2 - c2 - d2 + 2ab - 2cd
Express each of the following as the difference of two squares:
(x2 - 2x + 3) (x2 - 2x - 3)