Advertisements
Advertisements
प्रश्न
Factorise `x^2 + 1/x^2 + 2 - 3x - 3/x`.
उत्तर
We have, `x^2 + 1/x^2 + 2 - 3x - 3/x`
= `x^2 + 1/x^2 + 2 * x * 1/x - 3(x + 1/x)`
= `(x + 1/x)^2 - 3(x + 1/x)` ...[Using the identity, a2 + b2 + 2ab = (a + b)2]
= `(x + 1/x)(x + 1/x - 3)` ...`["Taking" (x + 1/x) "as common"]`
APPEARS IN
संबंधित प्रश्न
Use a suitable identity to get the following products.
(x + 3) (x + 3)
Simplify (2x +5)2 − (2x − 5)2
Using a2 − b2 = (a + b) (a − b), find 12.12 − 7.92
Using (x + a) (x + b) = x2 + (a + b) x + ab, find 103 × 104
Expand: (2a – 3b)2
Use a formula to multiply of (x - 5)(x + 5).
`(("a" + "b")("a"^3 - "b"^3))/(("a"^2 - "b"^2))` = ___________
Factorise the following expressions
x2 + 14x + 49
Factorise the following, using the identity a2 + 2ab + b2 = (a + b)2.
x2 + 6x + 9
Factorise the following, using the identity a2 + 2ab + b2 = (a + b)2.
a2x2 + 2abx + b2