Advertisements
Advertisements
प्रश्न
Factorize the following expressions:
32a3 + 108b3
उत्तर
32a3 +108b3
= 4(8a3 + 27b3)
= 4((2a)3 + (3b)3) [Using a3 + b3 = (a + b)(a2 - ab + b2)]
= 4 [(2a + 3b)((2a)2 - 2a x 3b + (3b)2)]
= 4(2a + 3b)(4a2 - 6ab + 9b2)
∴ 32a3 +108b3 = 4(2a + 3b)(4a2 - 6ab + 9b2 )
APPEARS IN
संबंधित प्रश्न
Factorize `[x^2 + 1/x^2] - 4[x + 1/x] + 6`
Factorize 2( x + y)2 - 9( x + y) - 5
Factorize the following expressions:
54x6y + 2x3y4
Factorize the following expressions:
x3 + 6x2 +12x +16
Factorize x3 + 8y3 + 6x2 y +12xy2
The factors of x2 + 4y2 + 4y − 4xy − 2x − 8 are
Separate monomials, binomials, trinomials and polynomials from the following algebraic expressions :
8 − 3x, xy2, 3y2 − 5y + 8, 9x − 3x2 + 15x3 − 7,
3x × 5y, 3x ÷ 5y, 2y ÷ 7 + 3x − 7 and 4 − ax2 + bx + y
Solve the following equation.
4(x + 12) = 8
The largest number of the three consecutive numbers is x + 1, then the smallest number is ________
When y = –1, the value of the expression 2y – 1 is 3