Advertisements
Advertisements
प्रश्न
Factorize the following expressions:
`a^3 - 1/a^3 - 2a + 2/a`
उत्तर
`= (a^3 - 1/a^3) - 2(a - 1/a)`
`= (a^3 - (1/a)^3) - 2(a - 1/a)`
`= (a - 1/a)(a^2 + a xx 1/a + (1/a)^2) - 2(a - 1/a)` `[∵ a^3 - b^3 = (a - b)(a^2 + ab + b^2)]`
`= (a - 1/a)(a^2 + 1 + 1/a^2) - 2(a - 1/a)`
`= (a - 1/a)(a^2 + 1 + 1/a^2 - 2)`
`=(a - 1/a)(a^2 + 1 + -1)`
`∴ a^3 - 1/a^3 - 2a + 2/a = (a- 1/a)(a^2 + 1/a^2 - 1)`
APPEARS IN
संबंधित प्रश्न
What are the possible expressions for the dimensions of the cuboid whose volume is 3x2 - 12x.
x3 - 8y3 + 27z3 +18xyz
The factors of x3 −x2y − xy2 + y3 are
The factors of x3 − 1 + y3 + 3xy are
(x + y)3 − (x − y)3 can be factorized as
The factors of x2 + 4y2 + 4y − 4xy − 2x − 8 are
Write the number of the term of the following polynomial.
5x2 + 3 x ax
Multiply: (1 + 6x2 - 4x3)(-1 + 3x - 3x2)
Divide: 8x + 24 by 4
The area of a rectangle is 6x2 – 4xy – 10y2 square unit and its length is 2x + 2y unit. Find its breadth.