मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Fill in the blank: Differentiate tan x and sec x w.r.t.x. using the formulae for differentiation of uvand1v respectively - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Fill in the blank:

Differentiate tan x and sec x w.r.t.x. using the formulae for differentiation of `"u"/"v" and 1/"v"` respectively

रिकाम्या जागा भरा

उत्तर

(i) Let y = `tan x = sin x/cos x`

∴ `("d"y)/("d"x) = "d"/("d"x) ((sin x)/(cos x))`

= `((cos x) "d"/("d"x) (sin x) - (sin x) "d"/("d"x) (cos x))/(cos^2x)`

= `((cos x)(cos x) - (sin x)(- sin x))/(cos^2x)`

= `(cos^2x + sin^2x)/(cos^2x)`

= `1/(cos^2x)`

= sec2x

(ii) Let y = sec x = `1/cos x`

∴ `("d"y)/("d"x) = "d"/("d"x) [1/cos x]`

= `((cos x) "d"/("d"x) (1) - (1) "d"/("d"x) (cos x))/(cos^2x)`

= `((cos x)(0) - (- sin x))/(cos^2x)`

= `sinx/cos^2x`

= `(1/(cos x))((sin x)/(cos x))`

= sec x tan x

shaalaa.com
Derivatives of Trigonometric Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differentiation - Exercise 9.2 [पृष्ठ १९२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 9 Differentiation
Exercise 9.2 | Q VI. (4) | पृष्ठ १९२

संबंधित प्रश्‍न

Differentiate the following w.r.t.x. :

y = x5 tan x


Differentiate the following w.r.t.x. :

y = (x2 + 2)2 sin x


Differentiate the following w.r.t.x. :

y = `"e"^xsecx - x^(5/3) log x`


Differentiate the following w.r.t.x. :

y = `x^4 + x sqrt(x) cos x - x^2"e"^x`


Differentiate the following w.r.t.x. :

y = `sinx logx + "e"^x cos x - "e"^x sqrt(x)`


Differentiate the following w.r.t.x. :

y = `"e"^x tanx + cos x log x - sqrt(x)  5^x`


Differentiate the following w.r.t.x. :

y = `(x^2 sin x)/(x + cos x)`


Fill in the blanks:

y = ex .tan x

Differentiating w.r.t.x

`("d"y)/("d"x) = "d"/("d"x)("e"^x tan x)`

= `square "d"/("d"x) tanx + tan x "d"/("d"x) square`

= `square  square + tan x  square`

= `"e"^x [square  + square]`


Fill in the blanks:

y = `sinx/(x^2 + 2)`

Differentiating. w.r.t.x.

`("d"y)/("d"x) = (square "d"/("d"x) (sin x) - sin x "d"/("dx) square)/(x^2 + 2)^2`

= `(square  square - sin x  square)/(x^2 + 2)^2`

= `(square - square)/(x^2 + 2)^2`


Fill in the blanks:

y = (3x2 + 5) cos x

Differentiating w.r.t.x

`("d"y)/("d"x) = "d"/("d"x) [(3x^2 + 5) cos x]`

= `(3x^2 + 5) "d"/("d"x) [square] + cos x  "d"/("d"x) [square]`

= `(3x^2 + 5) [square] + cos x  [square]`

∴ `(dx)/("d"y) = (3x^2 + 5) [square] + [square] cos x`


Select the correct answer from the given alternative:

If y = `(5sin x - 2)/(4sin x + 3)`, then `("d"y)/("d"x)` =


Select the correct answer from the given alternative:

Suppose f(x) is the derivative of g(x) and g(x) is the derivative of h(x).

If h(x) = a sin x + b cos x + c then f(x) + h(x) = 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×