Advertisements
Advertisements
प्रश्न
Fill in the blanks:
1 × 8 = .............. and a2xy2 × 8a3x2y = ............
उत्तर
1 × 8 = 8 and a2xy2 × 8a3x2y = 1 × 8 × a2 × a3 × x × x2 × y2 × y = 8a5x3y3
APPEARS IN
संबंधित प्रश्न
Subtract the first term from the second:
4.8b, 6.8b
Find the sum of 3a + 4b + 7c, − 5a + 3b − 6c and 4a − 2b − 4c.
Add the following expression:
− 17x2 − 2xy + 23y2, − 9y2 + 15x2 + 7xy and 13x2 + 3y2 − 4xy
Add the following expression:
− x2 − 3xy + 3y2 + 8, 3x2 − 5y2 − 3 + 4xy and − 6xy + 2x2 − 2 + y2
Add the following expression:
a3 − 2b3 + a, b3 − 2a3 + b and − 2b + 2b3 − 5a + 4a3
Evaluate:
3a − (a + 2b)
Subtract:
− 8x − 12y + 17z from x − y − z.
From the sum of 3a – 2b + 4c and 3b – 2c subtract a – b – c.
By how much should x + 2y – 3z be increased to get 3x?
The sum of two expressions is 3a2 + 2ab – b2. If one of them is 2a2 + 3b2, find the other.