मराठी

Find the Angle Between the Given Planes. → R ⋅ ( 2 ^ I + 3 ^ J − 6 ^ K ) = 5 and → R ⋅ ( ^ I − 2 ^ J + 2 ^ K ) = 9 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle between the given planes.
\[\vec{r} \cdot \left( 2 \hat{i} + 3 \hat{j}  - 6 \hat{k}  \right) = 5 \text{ and } \vec{r} \cdot \left( \hat{i}  - 2 \hat{j}  + 2 \hat{k}  \right) = 9\]

 

बेरीज

उत्तर

` \text{ We know that the angle between the planes }  \vec{r} . \vec{n_1} = d_1 , \vec{r} . \vec{n_2} = d_2 \text{ is given by }`

\[\cos \theta = \frac{\vec{n_1} . \vec{n_2}}{\left| \vec{n_1} \right| \left| \vec{n_2} \right|}\]

\[ \text{ Here } , \vec{n_1} = 2 \hat{i} + 3 \hat{j} - 6 \hat{k} ; \vec{n_2} = \hat{i} - 2 \hat{j}  + 2 \hat{k}  \]

\[ \text{ So } ,\cos \theta = \frac{\left( 2 \hat{i}  + 3 \hat{j}  - 6 \hat{k} \right) . \left( \hat{i}  - 2 \hat{j}  + 2 \hat{k}  \right)}{\left| 2 \hat{i}  + 3 \hat{j}  - 6 \hat{k}  \right| \left| \hat{i}  - 2 \hat{j}  + 2 \hat{k}  \right|} = \frac{2 - 6 - 12}{\sqrt{4 + 9 + 36} \sqrt{1 + 4 + 4}} = \frac{- 16}{\left( 7 \right) \left( 3 \right)} = \frac{- 16}{21}\]

\[ \Rightarrow \theta = \cos^{- 1} \left( \frac{- 16}{21} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: The Plane - Exercise 29.06 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 29 The Plane
Exercise 29.06 | Q 1.3 | पृष्ठ २९

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the angle between the planes `bar r.(2bar i+barj-bark)=3 and bar r.(hati+2hatj+hatk)=1`


In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

7x + 5y + 6z + 30 = 0 and 3x – y – 10z + 4 = 0


In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

2x + y + 3z – 2 = 0 and x – 2y + 5 = 0

 


In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

2x – 2y + 4z + 5 = 0 and 3x – 3y + 6z – 1 = 0


In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

2x – y + 3z – 1 = 0 and 2x – y + 3z + 3 = 0


In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

4x + 8y + z – 8 = 0 and y + z – 4 = 0


Find the angle between the given planes. \[\vec{r} \cdot \left( 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) = 1 \text{ and } \vec{r} \cdot \left( - \hat{i}  + \hat{j}  \right) = 4\]

 


Find the angle between the given planes. \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j}  + 2 \hat{k}  \right) = 6 \text{ and } \vec{r} \cdot \left( 3 \hat{i}  + 6 \hat{j}  - 2 \hat{k}  \right) = 9\]


Find the angle between the planes.

2x − y + z = 4 and x + y + 2z = 3


Find the angle between the planes.

x + y − 2z = 3 and 2x − 2y + z = 5


Find the angle between the planes.

 x − y + z = 5 and x + 2y + z = 9


Find the angle between the planes.
 2x − 3y + 4z = 1 and − x + y = 4


Find the angle between the planes.

 2x + y − 2z = 5 and 3x − 6y − 2z = 7

 

Show that the following planes are at right angles.

\[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + \hat{k}  \right) = 5 \text{ and }  \vec{r} \cdot \left( - \hat{i}  - \hat{j} + \hat{k}  \right) = 3\]

 


Show that the following planes are at right angles.

x − 2y + 4z = 10 and 18x + 17y + 4z = 49

 

 


The acute angle between the planes 2x − y + z = 6 and x + y + 2z = 3 is


The acute angle between the two planes x+y+2z = 3 and 3x -2y +2z = 7 ________.


The function `f(x) = log(1 + x) - (2x)/(2 + x)` is increasing on


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×