मराठी

Find the Angle Between the Line → R = ( 2 ^ I + 3 ^ J + 9 ^ K ) + λ ( 2 ^ I + 3 ^ J + 4 ^ K ) and the Plane → R ⋅ ( ^ I + ^ J + ^ K ) = 5 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle between the line r=(2i^+3j^+9k^)+λ(2i^+3j^+4k^)  and the plane  r(i^+j^+k^)=5.

 

उत्तर

 We know that the angle θ between the line r=a+λb and the plane r.n= dis given by
sinθ=b.n|b||n|.
 Here,
b=2i^+3j^+4k^ and n=i^+j^+k^
 So ,sinθ=(2i^+3j^+4k^).(i^+j^+k^)|2i^+3j^+4k^||i^+j^+k^|=2+3+44+9+161+1+1=9293=3329
θ=sin1(3329)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: The Plane - Exercise 29.11 [पृष्ठ ६१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 29 The Plane
Exercise 29.11 | Q 1 | पृष्ठ ६१

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Find the acute angle between the lines whose direction ratios are 5, 12, -13 and 3, - 4, 5.


Find the angle between the following pair of lines:

r =2i^-5j^+k^+λ(3i^-2j^+6k^)andr=7i^-6k^+μ(i^+2j^+2k^)


Find the angle between the following pair of lines:

r=3i^+j^ -2k^+λ(i^ -j^-2k^)andr=2i^-j^-56k^+μ(3i^-5j^-4k^)


Find the angle between the following pairs of lines: 

x-22=y-15=z+3-3 and x+2-1=y-48=z-54


Find the angle between the following pairs of lines:

xy=y2=z1 and x-54=y-21=z-38


Find the values of p so the line 1-x3=7y-142p=z-32 and 7-7x3p=y-51=6-z5 are at right angles.


Find the angle between the lines whose direction ratios are a, b, c and b − c, c − a, a − b.


The line  r=i^+λ(2i^mj^3k^)  is parallel to the plane  r(mi^+3j^+k^)=4. Find m

 

Show that the line whose vector equation is r=2i^+5j^+7k^+λ(i^+3j^+4k^) is parallel to the plane whose vector  r(i^+j^k^)=7.  Also, find the distance between them.

  

Find the angle between the line x23=y+11=z32 and the plane

3x + 4y + z + 5 = 0.

  

State when the line r=a+λb  is parallel to the plane  rn=d.Show that the line  r=i^+j^+λ(3i^j^+2k^)  is parallel to the plane  r(2j^+k^)=3.   Also, find the distance between the line and the plane.

 
 

Show that the plane whose vector equation is r(i^+2j^k^)=1 and the line whose vector equation is  r=(i^+j^+k^)+λ(2i^+j^+4k^)   are parallel. Also, find the distance between them. 


Find the angle between the line

x+12=y3=z36  and the plane 10x + 2y − 11z = 3.
 

Write the angle between the line x12=y21=z+32  and the plane x + y + 4 = 0. 

 

 Find the angle between the two lines 2x=3y=-zand6x=-y=-4z


Show that the straight lines whose direction cosines are given by 2l + 2m – n = 0 and mn + nl + lm = 0 are at right angles.


If l1, m1, n1; l2, m2, n2; l3, m3, n3 are the direction cosines of three mutually perpendicular lines, prove that the line whose direction cosines are proportional to l1 + l2 + l3, m1 + m2 + m3, n1 + n2 + n3 makes equal angles with them.


r=2i^-5j^+k^+λ(3i^+2j^+6k^) and r=2i^-5j^+k^+λ(3i^+2j^+6k^)


r=3i^+j^+2k^+l(i^-j^+2k^) and r=2i^+j^+56k^+m(3i^-5j^+4k^)


Assertion (A): The acute angle between the line r¯=i^+j^+2k^ +λ(i^-j^) and the x-axis is π4

Reason(R): The acute angle 𝜃 between the lines r¯=x1i^+y1j^+z1k^ +λ(a1i^+b1j^+c1k^) and  r¯=x2i^+y2j^+z2k^ +μ(a2i^+b2j^+c2k^) is given by cosθ = |a1a2+b1b2+c1c2|a12+b12+c12a22+b22+c22


The angle between two lines x+12=y+32=z-4-1 and x-41=y+42=z+12 is ______.


Find the angle between the following two lines:

r=2i^-5j^+k^+λ(3i^+2j^+6k^)

r=7i^-6k^+μ(i^+2j^+2k^)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.