मराठी

Find the Cartesian Forms of the Equations of the Following Planes. → R = ( ^ I − ^ J ) + S ( − ^ I + ^ J + 2 ^ K ) + T ( ^ I + 2 ^ J + ^ K ) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the Cartesian forms of the equations of the following planes. \[\vec{r} = \left( \hat{i}  - \hat{j}  \right) + s\left( - \hat{i}  + \hat{j}  + 2 \hat{k} \right) + t\left( \hat{i} + 2 \hat{j} + \hat{k}  \right)\]

बेरीज

उत्तर

\[\vec{r} = \left( \hat{i} - \hat{j} + 0 \hat{k} \right) + s \left( - \hat{i} + j + 2 \hat{k}  \right) + t \left( \hat{i} + 2 \hat{j} + \hat{k} \right)\]

\[ \text{ We know that the equation } \vec{r} = \vec{a} + s \vec{b} + t \vec{c} \text{ represents a plane passing through a point whose position vector is } \vec{a} \text{ and parallel to the vectors } \vec{b} \text{ and } \vec{c} .\]

\[\text{ Here } , \vec{a} = \hat{i}  - \hat{j}  + 0 \hat{k}  ; \vec{b} = - \hat{i}  + j + 2 \hat{k}  ; \vec{c} = \hat{i}  + 2 \hat{j}  + \hat{k}  \]

\[\text{ Normal vector,}  \vec{n} = \vec{b} \times \vec{c} \]

\[ = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ - 1 & 1 & 2 \\ 1 & 2 & 1\end{vmatrix}\]

\[ = - 3 \hat{i}  + 3 \hat{j}  - 3 \hat{k}  \]

\[\text{ The vector equation of the plane in scalar product form is } \]

\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]

\[ \Rightarrow \vec{r} . \left( - 3 \hat{i}  + 3 \hat{j}  - 3 \hat{k}  \right) = \left( \hat{i}  - \hat{j}  + 0 \hat{k}  \right) . \left( - 3 \hat{i} + 3 \hat{j}  - 3 \hat{k} \right)\]

\[ \Rightarrow \vec{r} . \left[ - 3 \left( \hat{i}  - \hat{j} + \hat{k}  \right) \right] = - 3 - 3 + 0\]

\[ \Rightarrow \vec{r} . \left[ - 3 \left( \hat{i}  - \hat{j} + \hat{k} \right) \right] = - 6\]

\[ \Rightarrow \vec{r} . \left( \hat{i}  - \hat{j}  + \hat{k}  \right) = 2\]

\[ \text{ For Cartesian form, let us substitute } \vec{r} = x \hat{i} + y \hat{j}  + z \hat{k} \text{ here. Then, we get } \]

\[\left( x \hat{i}  + y \hat{j}  + z \hat{k}  \right) . \left( \hat{i}  - \hat{j}  + \hat{k}  \right) = 2\]

\[ \Rightarrow x - y + z = 2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: The Plane - Exercise 29.07 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 29 The Plane
Exercise 29.07 | Q 2.1 | पृष्ठ ३३

संबंधित प्रश्‍न

Find the equations of the planes parallel to the plane x-2y + 2z-4 = 0, which are at a unit distance from the point (1,2, 3).


Find the equation of the plane passing through the following points.

 (2, 1, 0), (3, −2, −2) and (3, 1, 7)


Find the equation of the plane passing through the following points.

 (−5, 0, −6), (−3, 10, −9) and (−2, 6, −6)


Find the equation of the plane passing through the following point

 (1, 1, 1), (1, −1, 2) and (−2, −2, 2)


Find the equation of the plane passing through the following points. 

(2, 3, 4), (−3, 5, 1) and (4, −1, 2) 

 


Find the equation of the plane passing through the following point

(0, −1, 0), (3, 3, 0) and (1, 1, 1)

 

 


Show that the four points (0, −1, −1), (4, 5, 1), (3, 9, 4) and (−4, 4, 4) are coplanar and find the equation of the common plane.


Show that the following points are coplanar.
 (0, −1, 0), (2, 1, −1), (1, 1, 1) and (3, 3, 0) 


Show that the following points are coplanar. 

 (0, 4, 3), (−1, −5, −3), (−2, −2, 1) and (1, 1, −1)

 

Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\] \[\vec{r} = \left( 2 \hat{i} - \hat{k} \right) + \lambda \hat{i} + \mu\left( \hat{i} - 2 \hat{j} - \hat{k}
\right)\]

 

Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\] \[\vec{r} = \left( 1 + s - t \right) \hat{t}  + \left( 2 - s \right) \hat{j}  + \left( 3 - 2s + 2t \right) \hat{k} \]

 

Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\]\[\vec{r} = \left( \hat{i}  + \hat{j}  \right) + \lambda\left( \hat{i}  + 2 \hat{j}  - \hat{k}  \right) + \mu\left( - \hat{i}  + \hat{j} - 2 \hat{k} \right)\]


Find the vector equations of the following planes in scalar product form  \[\left( \vec{r} \cdot \vec{n} = d \right):\]\[\vec{r} = \hat{i} - \hat{j} + \lambda\left( \hat{i}  + \hat{j}  + \hat{k}  \right) + \mu\left( 4 \hat{i}  - 2 \hat{j}  + 3 \hat{k} \right)\]

 


Find the Cartesian forms of the equations of the following planes.

\[\vec{r} = \left( 1 + s + t \right) \hat{i}  + \left( 2 - s + t \right) \hat{i}  + \left( 3 - 2s + 2t \right) \hat{k}\]

 


Find the vector equation of the following planes in non-parametric form. \[\vec{r} = \left( 2 \hat{i}  + 2 \hat{j}  - \hat{k}  \right) + \lambda\left( \hat{i}  + 2 \hat{j}  + 3 \hat{k}  \right) + \mu\left( 5 \hat{i}  - 2 \hat{j} + 7 \hat{k}  \right)\]

 


Find the equation of the plane which is parallel to 2x − 3y + z = 0 and which passes through (1, −1, 2).


Find the equation of the plane through (3, 4, −1) which is parallel to the plane \[\vec{r} \cdot \left( 2 \hat{i} - 3 \hat{j}  + 5 \hat{k} \right) + 2 = 0 .\]

 

Find the equation of the plane passing through the line of intersection of the planes 2x − 7y + 4z − 3 = 0, 3x − 5y + 4z + 11 = 0 and the point (−2, 1, 3).


Show that the lines \[\vec{r} = \left( 2 \hat{j}  - 3 \hat{k} \right) + \lambda\left( \hat{i}  + 2 \hat{j}  + 3 \hat{k} \right) \text{ and } \vec{r} = \left( 2 \hat{i}  + 6 \hat{j} + 3 \hat{k} \right) + \mu\left( 2 \hat{i}  + 3 \hat{j} + 4 \hat{k}  \right)\]  are coplanar. Also, find the equation of the plane containing them.

 
 

Show that the lines \[\frac{x + 1}{- 3} = \frac{y - 3}{2} = \frac{z + 2}{1} \text{ and }\frac{x}{1} = \frac{y - 7}{- 3} = \frac{z + 7}{2}\]  are coplanar. Also, find the equation of the plane containing them. 

 

Find the values of  \[\lambda\] for which the lines

\[\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z + 3}{\lambda^2}\]and  \[\frac{x - 3}{1} = \frac{y - 2}{\lambda^2} = \frac{z - 1}{2}\]  are coplanar . 

If the lines  \[x =\]  5 ,  \[\frac{y}{3 - \alpha} = \frac{z}{- 2}\] and   \[x = \alpha\] \[\frac{y}{- 1} = \frac{z}{2 - \alpha}\] are coplanar, find the values of  \[\alpha\].

 


If the straight lines  \[\frac{x - 1}{2} = \frac{y + 1}{k} = \frac{z}{2}\] and \[\frac{x + 1}{2} = \frac{y + 1}{2} = \frac{z}{k}\] are coplanar, find the equations of the planes containing them.

 


Find the equation of the plane through the points (2, 1, 0), (3, –2, –2) and (3, 1, 7).


The equation of the circle passing through the foci of the ellipse `x^2/16 + y^2/9` = 1 and having centre at (0, 3) is


Find the equations of the planes that passes through three points (1, 1, – 1), (6, 4, – 5),(– 4, – 2, 3)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×