मराठी

Find the Cube Root of the Following Number −729 × −15625 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the cube root of the following number −729 × −15625 .

बेरीज

उत्तर

Property:
For any two integers a and b,

\[\sqrt[3]{ab} = \sqrt[3]{a} \times \sqrt[3]{b}\]

From the above property, we have:​

\[\sqrt[3]{- 729 \times - 15625}\]

\[ = \sqrt[3]{- 729} \times \sqrt[3]{- 15625}\]

\[= - \sqrt[3]{729} \times - \sqrt[3]{15625}\]     (For any positive integer x,

\[\sqrt[3]{- x} = - \sqrt[3]{x}\]
Cube root using units digit:
Let us consider the number 15625.
The unit digit is 5; therefore, the unit digit in the cube root of 15625 will be 5.
After striking out the units, tens and hundreds digits of the given number, we are left with 15.
Now, 2 is the largest number whose cube is less than or equal to 15 (\[\left( 2^3 < 15 < 3^3 \right)\].
Therefore, the tens digit of the cube root of 15625 is 2.
∴ \[\sqrt[3]{15625} = 25\]
Also
\[\sqrt[3]{729} = 9, because 9 \times 9 \times 9 = 729\]
Thus
\[\sqrt[3]{- 729 \times - 15625} = - \sqrt[3]{729} \times - \sqrt[3]{15625} = - 9 \times - 25 = 225\]

 

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Cubes and Cube Roots - Exercise 4.4 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 8
पाठ 4 Cubes and Cube Roots
Exercise 4.4 | Q 3.4 | पृष्ठ ३०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×