मराठी

Find the Cube Root of the Following Rational Number 0.003375 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the cube root of the following rational number 0.003375 .

बेरीज

उत्तर

We have: 

\[0 . 003375 = \frac{3375}{1000000}\]

∴ \[\sqrt[3]{0 . 003375} = \sqrt[3]{\frac{3375}{1000000}} = \frac{\sqrt[3]{3375}}{\sqrt[3]{1000000}}\]

Now
On factorising 3375 into prime factors, we get:

\[3375 = 3 \times 3 \times 3 \times 5 \times 5 \times 5\]

On grouping the factors in triples of equal factors, we get:

\[3375 = \left\{ 3 \times 3 \times 3 \right\} \times \left\{ 5 \times 5 \times 5 \right\}\]

Now, taking one factor from each triple, we get:

\[\sqrt[3]{3375} = 3 \times 5 = 15\]

Also

\[\sqrt[3]{1000000} = \sqrt[3]{100 \times 100 \times 100} = 100\]

∴ \[\sqrt[3]{0 . 003375} = \frac{\sqrt[3]{3375}}{\sqrt[3]{1000000}} = \frac{15}{100} = 0 . 15\]

 
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Cubes and Cube Roots - Exercise 4.4 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 8
पाठ 4 Cubes and Cube Roots
Exercise 4.4 | Q 6.2 | पृष्ठ ३०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×