Advertisements
Advertisements
प्रश्न
Find the cube root of the following rational number 1.331 .
बेरीज
उत्तर
We have:
\[1 . 331 = \frac{1331}{1000}\]
∴ \[\sqrt[3]{1 . 331} = \sqrt[3]{\frac{1331}{1000}} = \frac{\sqrt[3]{1331}}{\sqrt[3]{1000}} = \frac{\sqrt[3]{11 \times 11 \times 11}}{\sqrt[3]{1000}}$$ = \frac{11}{10} = 1 . 1\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
\[\left\{ ( 6^2 + 8^2 )^{1/2} \right\}^3\]
Find the cube of −11 .
Evaluate of the following
\[\sqrt[3]{27} + \sqrt[3]{0 . 008} + \sqrt[3]{0 . 064}\]
Evaluate of the following
\[\sqrt[3]{\frac{729}{216}} \times \frac{6}{9}\]
Evaluate of the following
\[\sqrt[3]{\frac{0 . 027}{0 . 008}} \div \sqrt[]{\frac{0 . 09}{0 . 04}} - 1\]
Find the cube of: `2 1/2`
1m3 = ______ cm3.
The cube of 0.4 is 0.064.
The cube of a one-digit number cannot be a two-digit number.
Evaluate:
`{(6^2 + (8^2)^(1/2))}^3`