Advertisements
Advertisements
प्रश्न
Find the equation of the hyperbola whose foci are `(0,+- sqrt10)` and passing through the point (2,3)
उत्तर
`foci -> (0, +- sqrt10)`
be = `sqrt10` ......(1)
Equation of hyperbola is
`y^2/b^2 - x^2/a^2 = 1` .......(2)
equation 2 passing through (2, 3)
`:. 9/b^2 - 4/a^2 = 1`
we know that `a^2 = b^2e^2 - b^2`
`a^2 = 10 - b^2`
`9/b^2 - 4/(10 - b^2) = 1`
Put `b^2 = t`
`9/t- 4/(10 - t) = 1`
`90 - 9t - 4t = 10t - t^2`
`t^2 - 23t + 90 = 0`
t = 18, t = 5
`b^2 = 18, b^2 = 5`
`b = 3sqrt2 , b = sqrt5`
When `b = 3sqrt2`
then `a^2 = 10 - 18 = -8` (Neglected `∵ a = sqrt-8` is an imaginary number).
∴ when `b = sqrt5`
then `a = sqrt5`
∴ equation of hyperbola
`y^2/5 - x^2/5 = 1`
`y^2 - x^2 = 5`
shaalaa.com
Solve Population Based Problems on Application of Differential Equations
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?