मराठी

Find Lim X → 5 / 2 [ X ] . - Mathematics

Advertisements
Advertisements

प्रश्न

Find \[\lim_{x \to 5/2} \left[ x \right] .\] 

उत्तर

\[\lim_{x \to \frac{5}{2}} \left[ x \right]\]
\[\text{ LHL }: \]
\[ \lim_{x \to \frac{5}{2}^-} \left[ x \right]\]
\[\text{ Let } x = \frac{5}{2} - \text{ h, where h } \to 0 . \]
\[ \lim_{h \to 0} \left[ \frac{5}{2} - h \right]\]
\[ = 2\]
\[\text{ RHL }: \]
\[ \lim_{x \to \frac{5}{2}^+} \left[ x \right]\]
\[\text{ Let } x = \frac{5}{2} + \text{ h, where h } \to 0 . \]
\[ \lim_{h \to 0} \left[ \frac{5}{2} + h \right]\]
\[ = 2\]

We know:

\[\lim_{x \to \frac{5}{2}} \left[ x \right] = \lim_{x \to \frac{5}{2}^-} \left[ x \right] = \lim_{x \to \frac{5}{2}^+} \left[ x \right]\] 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: Limits - Exercise 29.1 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 29 Limits
Exercise 29.1 | Q 19 | पृष्ठ १२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find k so that \[\lim_{x \to 2} f\left( x \right)\] \[f\left( x \right) = \begin{cases}2x + 3, & x \leq 2 \\ x + k, & x > 2\end{cases} .\] 


Show that \[\lim_{x \to 0} \frac{1}{x}\] does not exist. 


Let \[f\left( x \right) = \begin{cases}x + 5, & if x > 0 \\ x - 4, & if x < 0\end{cases}\] \[\lim_{x \to 0} f\left( x \right)\]  does not exist. 


Find \[\lim_{x \to 3} f\left( x \right)\] where \[f\left( x \right) = \begin{cases}4, & if x > 3 \\ x + 1, & if x < 3\end{cases}\] 


If \[f\left( x \right) = \left\{ \begin{array}{l}2x + 3, & x \leq 0 \\ 3 \left( x + 1 \right), & x > 0\end{array} . \right.\] find \[\lim_{x \to 0} f\left( x \right)\] 


If \[f\left(  x \right) = \left\{ \begin{array}{l}2x + 3, & x \leq 0 \\ 3 \left( x + 1 \right), & x > 0\end{array} . \right.\] find \[\lim_{x \to 1} f\left( x \right)\]


Find \[\lim_{x \to 1} f\left( x \right)\] if \[f\left( x \right) = \begin{cases}x^2 - 1, & x \leq 1 \\ - x^2 - 1, & x > 1\end{cases}\] 


Evaluate \[\lim_{x \to 0} f\left( x \right)\]  where \[f\left( x \right) = \begin{cases}\frac{\left| x \right|}{x}, & x \neq 0 \\ 0, & x = 0\end{cases}\] 


Find \[\lim_{x \to 1^+} \left( \frac{1}{x - 1} \right) .\] 


Evaluate the following one sided limit: 

\[\lim_{x \to 2^+} \frac{x - 3}{x^2 - 4}\] 


Evaluate the following one sided limit: 

\[\lim_{x \to 2^-} \frac{x - 3}{x^2 - 4}\] 


Evaluate the following one sided limit:

\[\lim_{x \to 0^+} \frac{1}{3x}\]


Evaluate the following one sided limit:

\[\lim_{x \to - 8^+} \frac{2x}{x + 8}\]


Evaluate the following one sided limit:

\[\lim_{x \to 0^+} \frac{2}{x^{1/5}}\]


Evaluate the following one sided limit: 

\[\lim_{x \to \frac{\pi}{2}} \tan x\]


Evaluate the following one sided limit:

\[\lim_{x \to \frac{\pi}{2}} \tan x\]


Evaluate the following one sided limit:

\[\lim_{x \to 0^-} \frac{x^2 - 3x + 2}{x^3 - 2 x^2}\]


Evaluate the following one sided limit:

\[\lim_{x \to 0^-} 2 - \cot x\] 


Evaluate the following one sided limit:

\[\lim_{x \to 0^-} 1 + cosec x\]


Show that \[\lim_{x \to 0} e^{- 1/x}\] does not exist. 


Find: \[\ \lim_{x \to 2} \left[ x \right]\] 


Find: \[ \lim_{x \to 1} \left[ x \right]\]


Prove that \[\lim_{x \to a^+} \left[ x \right] = \left[ a \right]\] R. Also, prove that \[\lim_{x \to 1^-} \left[ x \right] = 0 .\]


Show that \[\lim_{x \to 2^-} \frac{x}{\left[ x \right]} \neq \lim_{x \to 2^+} \frac{x}{\left[ x \right]} .\]


Find \[\lim_{x \to 3^+} \frac{x}{\left[ x \right]} .\]  Is it equal to \[\lim_{x \to 3^-} \frac{x}{\left[ x \right]} .\]


Show that \[\lim_{x \to 0} \sin \frac{1}{x}\]does not exist. 


\[\lim_{x \to 0} \frac{\cos 3x - \cos 5x}{x^2}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×