मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the Locus of a Point, the Tangents from Which to the Circle X2 + Y2 = A2 Are Mutually Perpendicular - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the locus of a point, the tangents from which to the circle x2 + y2 = a2 are mutually perpendicular

उत्तर

Let P(x1, y1) be any point on the locus.

Equation of a tangent with slope ‘m’ to the circle x2 + y2 = a2 is y = mx ± a`sqrt(1+m^2)`

This tangent passes through P(x1, y1)

∴ y1 = mx1 ± a `sqrt(1+m^2)`

∴ (y1 – mx1)2 = a2(1 + m2)

∴ `(x_1^2 − a^2)m^2 − 2x_1y_1m + (y_1^2 − a^2)` = 0 ….(i)

This is a quadratic equation in ‘m’.

Let m1 and m2 be slopes of two tangents drawn from P(x1, y1) to the circle.

Thus, it has two roots say m1 and m2, which are the slopes of tangents drawn from P.

∴ `m_1.m_2 = (y_1^2 - a^2)/(x_1^2  -a^2)`

∴ `y_1^2 − a^2 = −x_1^2 + a^2`

∴ `x_1^2 + y_1^2 = 2a^2`

∴ the equation of the locus of P(x1, y1) is x2 + y2 = 2a2.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2012-2013 (October)

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×