Advertisements
Advertisements
प्रश्न
Find the mean of each of the following frequency distributions
Class interval | 0 - 8 | 8 - 16 | 16 - 24 | 24 - 32 | 32 - 40 |
Frequency | 5 | 6 | 4 | 3 | 2 |
उत्तर
Let the assumed A = 20
Class interval | Mid value(x1) | d1 = x1 - 20 | `"u"_1=(x_1-20)/8` | f1 | f1u1 |
0 - 8 | 4 | -16 | -2 | 5 | -10 |
8 - 16 | 12 | -8 | -1 | 6 | -6 |
16 - 24 | 20 | 0 | 0 | 4 | 0 |
24 - 32 | 28 | 8 | 1 | 3 | 3 |
32 - 40 | 36 | 16 | 2 | 2 | 4 |
N = 20 | `sumf_1"u"_1=-9` |
We have
A = 20, h = 8
Mean `=A+hxx(sumf_1"u"_1)/N`
`=20+8xx(-9)/20`
`=20+(-72)/20`
`=20-72/20`
= 20 - 3.6
= 16.4
APPEARS IN
संबंधित प्रश्न
Find the mean of each of the following frequency distributions
Class interval | 25 - 35 | 35 - 45 | 45 - 55 | 55 - 65 | 65 - 75 |
Frequency | 6 | 10 | 8 | 12 | 4 |
Using an appropriate method, find the mean of the following frequency distribution:
Class | 84-90 | 90-96 | 96-102 | 102-108 | 108-114 | 114-120 |
Frequency | 8 | 10 | 16 | 23 | 12 | 11 |
Which method did you use, and why?
If the mean of the following frequency distribution is 24, find the value of p.
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency | 3 | 4 | p | 3 | 2 |
In an annual examination, marks (out of 90) obtained by students of Class X in mathematics are given below:
Marks Obtained |
0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
Number of students |
2 | 4 | 5 | 20 | 9 | 10 |
Find the mean marks.
The distances covered by 250 public transport buses in a day is shown in the following frequency distribution table. Find the median of the distance.
Distance (km)
|
200 - 210 | 210 - 220 | 220 - 230 | 230 - 240 | 240 - 250 |
No. of buses | 40 | 60 | 80 | 50 | 20 |
In X standard, there are three sections A, B and C with 25, 40 and 35 students respectively. The average marks of section A is 70%, section B is 65% and of section C is 50%. Find the average marks of the entire X standard.
Mean of n numbers x1, x2, … xn is m. If xn is replaced by x, then new mean is ______.
Consider the following distribution of SO2 concentration in the air (in ppm = parts per million) in 30 localities. Find the mean SO2 concentration using assumed mean method. Also find the values of A, B and C.
Class interval | Frequency (fi) | Class mark (xi) | di = xi - a |
0.00 - 0.04 | 4 | 0.02 | -0.08 |
0.04 - 0.08 | 9 | 0.06 | A |
0.08 - 0.12 | 9 | 0.10 | B |
0.12 - 0.16 | 2 | 0.14 | 0.04 |
0.16 - 0.20 | 4 | 0.18 | C |
0.20 - 0.24 | 2 | 0.22 | 0.12 |
Total | `sumf_i=30` |
Is it true to say that the mean, mode and median of grouped data will always be different? Justify your answer
The mean of the following frequency distribution is 25. Find the value of f.
Class | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Frequency | 5 | 18 | 15 | f | 6 |