Advertisements
Advertisements
प्रश्न
Find the mean using direct method:
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Frequency | 7 | 5 | 6 | 12 | 8 | 2 |
उत्तर
Class | Frequency`(f_i)` | Mid values `(x_i)` | `f_i xx x_i` |
0-10 | 7 | 5 | 35 |
10-20 | 5 | 15 | 75 |
20-30 | 6 | 25 | 150 |
30-40 | 12 | 35 | 420 |
40-50 | 8 | 45 | 360 |
50-60 | 2 | 55 | 110 |
`∑ f_i = 40` | `∑(f_1xxx_1)=1150` |
∴ Mean , x = `(∑ (f_ixxx_i))/(∑ f_i)`
=` 1150/40`
=28.75
∴ x = 28.75
APPEARS IN
संबंधित प्रश्न
If the mean of the following data is 18.75. Find the value of p.
x | 10 | 15 | P | 25 | 30 |
f | 5 | 10 | 7 | 8 | 2 |
The number of students absent in a class were recorded every day for 120 days and the information is given in the following frequency table:
No. of students absent (x) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
No. of days (f) | 1 | 4 | 10 | 50 | 34 | 15 | 4 | 2 |
Find the mean number of students absent per day.
The following table gives the distribution of total household expenditure (in rupees) of manual workers in a city. Find the average expenditure (in rupees) per household.
Expenditure (in rupees) (x1) |
Frequency(f1) |
100 - 150 | 24 |
150 - 200 | 40 |
200 - 250 | 33 |
250 - 300 | 28 |
300 - 350 | 30 |
350 - 400 | 22 |
400 - 450 | 16 |
450 - 500 | 7 |
For the following distribution, calculate mean using all suitable methods:
Size of item | 1 - 4 | 4 - 9 | 9 - 16 | 16 - 27 |
Frequency | 6 | 12 | 26 | 20 |
If the mean of the following frequency distribution is 24, find the value of p.
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency | 3 | 4 | p | 3 | 2 |
The following distribution shows the daily pocket allowance of children of a locality. If the mean pocket allowance is ₹ 18 , find the missing frequency f.
Daily pocket allowance (in Rs.) |
11-13 | 13-15 | 15-17 | 17-19 | 19-21 | 21-23 | 23-25 |
Number of children | 7 | 6 | 9 | 13 | f | 5 | 4 |
Write the empirical relation between mean, mode and median.
If the mean of the following distribution is 2.6, then the value of y is:
Variable (x) | 1 | 2 | 3 | 4 | 5 |
Frequency | 4 | 5 | y | 1 | 2 |
If xi’s are the midpoints of the class intervals of grouped data, fi’s are the corresponding frequencies and `barx` is the mean, then `sum(f_ix_i - barx)` is equal to ______.
The following table gives the marks scored by a set of students in an examination. Calculate the mean of the distribution by using the short cut method.
Marks | Number of Students (f) |
0 – 10 | 3 |
10 – 20 | 8 |
20 – 30 | 14 |
30 – 40 | 9 |
40 – 50 | 4 |
50 – 60 | 2 |