Advertisements
Advertisements
प्रश्न
Find out the indicated elasticity for the following function:
p = `10 e^(- x/3)`, x > 0; ηs
उत्तर
Given p = `10 e^(- x/3)`
Differentiating with respect to 'x' we get,
`"dp"/"dx" = 10 * e^(-x/3) (- 1/3) = - 10/3 e^(- x/3)`
`=> "dp"/"dx" = (-3)/(10e^(-x/3))`
`=> "dx"/"dp" = (-3)/(10e^(-x/3))`
Elasticity of demand
`eta_"d"= - "p"/x * "dx"/"dp"`
`=> eta_"d"= cancel(-10 e^(- x/3))/x ((-3)/(cancel(10e^(-x/3)))) = 3/x`
APPEARS IN
संबंधित प्रश्न
If the demand law is given by p = `10e^(- x/2)` then find the elasticity of demand.
Find the elasticity of demand in terms of x for the following demand laws and also find the value of x where elasticity is equal to unity.
p = (a – bx)2
Find the elasticity of demand in terms of x for the following demand laws and also find the value of x where elasticity is equal to unity.
p = a – bx2
The total cost function y for x units is given by y = 3x`((x+7)/(x+5)) + 5`. Show that the marginal cost decreases continuously as the output increases.
The demand and cost functions of a firm are x = 6000 – 30p and C = 72000 + 60x respectively. Find the level of output and price at which the profit is maximum.
Average fixed cost of the cost function C(x) = 2x3 + 5x2 – 14x + 21 is:
If the demand function is said to be inelastic, then:
For the cost function C = `1/25 e^(5x)`, the marginal cost is:
Instantaneous rate of change of y = 2x2 + 5x with respect to x at x = 2 is:
A company begins to earn profit at: