Advertisements
Advertisements
प्रश्न
Find the derivative of the following function w.r.t. x.:
x–9
उत्तर
Let y = x–9
Differentiating w.r.t. x, we get
`dy/dx = d/dx x^-9`
= -9 x -9-1
= –9 x –10
APPEARS IN
संबंधित प्रश्न
Differentiate the following w. r. t. x. : `x^(5/2) + 5x^(7/5)`
Differentiate the following w. r. t. x. : `2/7 x^(7/2) + 5/2 x^(2/5)`
Differentiate the following w. r. t. x. : x3 log x
Find the derivative of the following w. r. t. x by using method of first principle:
x2 + 3x – 1
Find the derivative of the following w. r. t. x by using method of first principle:
e2x+1
Find the derivative of the following w. r. t. x by using method of first principle:
tan (2x + 3)
Find the derivative of the following w. r. t. x by using method of first principle:
sec (5x − 2)
Find the derivative of the following w. r. t. x by using method of first principle:
`x sqrt(x)`
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
`sqrt(2x + 5)` at x = 2
Find the derivative of the following w. r. t. x. at the point indicated against them by using method of first principle:
tan x at x = `pi/4`
Show that f(x) = x2 is continuous and differentiable at x = 0
Discuss the continuity and differentiability of f(x) at x = 2
f(x) = [x] if x ∈ [0, 4). [where [*] is a greatest integer (floor) function]
Examine the function
f(x) `{:(= x^2 cos (1/x)",", "for" x ≠ 0),(= 0",", "for" x = 0):}`
for continuity and differentiability at x = 0
Select the correct answer from the given alternative:
If y = `("a"x + "b")/("c"x + "d")`, then `("d"y)/("d"x)` =
Select the correct answer from the given alternative:
If f(x) `{:( = x^2 + sin x + 1, "for" x ≤ 0),(= x^2 - 2x + 1, "for" x ≤ 0):}` then
Select the correct answer from the given alternative:
If, f(x) = `x^50/50 + x^49/49 + x^48/48 + .... +x^2/2 + x + 1`, thef f'(1) =
Find the values of p and q that make function f(x) differentiable everywhere on R
f(x) `{:( = 3 - x"," , "for" x < 1),(= "p"x^2 + "q"x",", "for" x ≥ 1):}`
If y = `"e"^x/sqrt(x)` find `("d"y)/("d"x)` when x = 1