Advertisements
Advertisements
प्रश्न
Find the equations of the tangent and normal to hyperbola 12x2 – 9y2 = 108 at θ = `pi/3`. (Hint: use parametric form)
बेरीज
उत्तर
(i) Equation of the tangent to hyperbola be
`(xsectheta)/"a" - (ytantheta)/"b"` = 1
Given 12x2 – 9y2 = 108
`(12x^2)/108 - (9y^2)/108` = 1
`x^2/9 - y^2/12` = 1
a2 = 9, b2 = 12
a = 3, b = `2sqrt(3)`, θ = `pi/3`
∴ `(x sec pi/2)/3 - (y tan pi/3)/(2sqrt(3))` = 1
`(x(2))/3 - (ysqrt(3))/(2sqrt(3))` = 1
`(2x)/3 - y/2` = 1
`(4x - 3y)/6` = 1
⇒ 4x – 3y = 6
⇒ 4x – 3y – 6 = 0
(ii) Equation of the normal to hyperbola be
`("a"x)/sec theta + ("b"y)/tan theta = "a"^2 + "b"^2`
`(3x)/(sec pi/3) + (2sqrt(3)y)/(tan pi/3)` = 9 + 12
`(3x)/2 + (2sqrt(3)y)/sqrt(3)` = 21
`(3x + 4y)/2` = 21
⇒ 3x + 4y = 42
⇒ 3x + 4y – 42 = 0
shaalaa.com
Parametric Form of Conics
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?