Advertisements
Advertisements
प्रश्न
Find the integrals of the following:
`1/(9x^2 - 4)`
उत्तर
`int ("d"x)/(9x^2 - 4) = 1/9 int ("d"x)/(x^2 - 4/9)`
= `1/9 int ("d"x)/(x^2 - (2/3)^2`
`int ("d"x)/(x^2 - "a"^2) = 1/(2"a") log |(x - "a")/(x + "a")| + "c"`
= `1/9 xx 1/(2 xx (2/3)) log |(x - 2/3)/(x + 2/3)| + "c"`
= `1/9 xx 1/(4/3) log |((3x - 2)/3)/((3x + 2)/3)| + "c"`
= `1/9 xx 3/4 log |(3x - 2)/(3x + 2)| + "c"`
= `1/12 log |(3x - 2)/(3x + 2)| + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (1+logx)/(x(2+logx)(3+logx))dx`
Integrate the following functions with respect to x :
`(cos2x - cos 2 alpha)/(cosx - cos alpha)`
Integrate the following functions with respect to x :
`(3 + 4cosx)/(sin^2x)`
Integrate the following functions with respect to x :
`(sin4x)/sinx`
Integrate the following functions with respect to x :
`(3x + 4) sqrt(3x + 7)`
Integrate the following with respect to x :
`x/sqrt(1 + x^2)`
Integrate the following with respect to x :
`alpha beta x^(alpha - 1) "e"^(- beta x^alpha)`
Integrate the following with respect to x :
x(1 – x)17
Integrate the following with respect to x:
9xe3x
Integrate the following with respect to x:
`"e"^x ((2 + sin 2x)/(1 + cos 2x))`
Find the integrals of the following:
`1/(6x - 7 - x^2)`
Integrate the following with respect to x:
`(x + 2)/sqrt(x^2 - 1)`
Integrate the following functions with respect to x:
`sqrt((6 - x)(x - 4))`
Choose the correct alternative:
`int sqrt(tanx)/(sin2x) "d"x` is
Choose the correct alternative:
`int tan^-1 sqrt((1 - cos 2x)/(1 + cos 2x)) "d"x` is
Choose the correct alternative:
`int sqrt((1 - x)/(1 + x)) "d"x` is
Choose the correct alternative:
`int (sec^2x)/(tan^2 x - 1) "d"x`
Choose the correct alternative:
`int (x + 2)/sqrt(x^2 - 1) "d"x` is
Choose the correct alternative:
`int sin sqrt(x) "d"x` is