मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Find the intercepts cut off by the plane rijkr→⋅(6i^+45j^-3k^) = 12 on the coordinate axes - Mathematics

Advertisements
Advertisements

प्रश्न

Find the intercepts cut off by the plane `vec"r"*(6hat"i" + 45hat"j" - 3hat"k")` = 12 on the coordinate axes

बेरीज

उत्तर

`vec"r"*(6hat"i" + 45hat"j" - 3hat"k")` = 12

`(hat"i" + yhat"j" + zhat"k")*(6hat"i" + 4hat"j" - 3hat"k")` = 2

`6x + 4y - 3z` = 12

`x/2 + y/3 + z/(-4)` = 1  ......(÷ 12)

x-intercept = 2

y-intercept = 3

z-intercept = – 4

shaalaa.com
Different Forms of Equation of a Plane
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Applications of Vector Algebra - Exercise 6.6 [पृष्ठ २५९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 6 Applications of Vector Algebra
Exercise 6.6 | Q 5 | पृष्ठ २५९

संबंधित प्रश्‍न

Find the direction cosines of the normal to the plane 12x + 3y – 4z = 65. Also find the non-parametric form of vector equation of a plane and the length of the perpendicular to the plane from the origin


A plane passes through the point (− 1, 1, 2) and the normal to the plane of magnitude `3sqrt(3)` makes equal acute angles with the coordinate axes. Find the equation of the plane


If a plane meets the co-ordinate axes at A, B, C such that the centroid of the triangle ABC is the point (u, v, w), find the equation of the plane


Find the parametric form of vector equation, and Cartesian equations of the plane passing through the points (2, 2, 1), (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 9


If the straight lines `(x - 1)/2 = (y + 1)/lambda = z/2` and `(x + 1)/5 = (y + 1)/2 = z/lambda` are coplanar, find λ and equations of the planes containing these two lines


Choose the correct alternative:

If `vec"a", vec"b", vec"c"` are three unit vectors such that `vec"a"` is perpendicular to `vec"b"`, and is parallel to `vec"c"` then `vec"a" xx (vec"b" xx vec"c")` is equal to


Choose the correct alternative:

The volume of the parallelepiped with its edges represented by the vectors `hat"i" + hat"j", hat"i" + 2hat"j", hat"i" + hat"j" + pihat"k"` is


Choose the correct alternative:

If `vec"a"` and `vec"b"` are unit vectors such that `[vec"a", vec"b", vec"a" xx vec"b"] = 1/4`, are unit vectors such that `vec"a"` nad `vec"b"` is


Choose the correct alternative:

If `vec"a" = 2hat"i" + 3hat"j" - hat"k", vec"b" = hat"i" + 2hat"j" - 5hat"k", vec"c" = 3hat"i" + 5hat"j" - hat"k"`, then a vector perpendicular to `vec"a"` and lies in the plane containing `vec"b"` and `vec"c"` is 


Choose the correct alternative:

If the line `(x  - )/3 = (y - 1)/(-5) = (x + 2)/2` lies in the plane x + 3y – αz + ß = 0 then (α + ß) is


Choose the correct alternative:

The distance between the planes x + 2y + 3z + 7 = 0 and 2x + 4y + 6z + 7 = 0 is


Choose the correct alternative:

If the planes `vec"r"(2hat"i" - lambdahat"j" + hatk")` =  and `vec"r"(4hat"i" + hat"j" - muhat"k")` = 5 are parallel, then the value of λ and µ are


Let d be the distance between the foot of perpendiculars of the points P(1, 2, –1) and Q(2, –1, 3) on the plane –x + y + z = 1. Then d2 is equal to ______.


A plane P contains the line x + 2y + 3z + 1 = 0 = x – y – z – 6, and is perpendicular to the plane –2x + y + z + 8 = 0. Then which of the following points lies on P?


The plane passing through the points (1, 2, 1), (2, 1, 2) and parallel to the line, 2x = 3y, z = 1 also passes through the point ______.


The equation of a plane containing the line of intersection of the planes 2x – y – 4 = 0 and y + 2z – 4 = 0 and passing through the point (1, 1, 0) is ______.


A point moves in such a way that sum of squares of its distances from the co-ordinate axis is 36, then distance of then given point from origin are ______.


Let (λ, 2, 1) be a point on the plane which passes through the point (4, –2, 2). If the plane is perpendicular to the line joining the points (–2, –21, 29) and (–1, –16, 23), then `(λ/11)^2 - (4λ)/11 - 4` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×