मराठी

Find the maximum and the minimum values of the function f(x) = x2ex. -

Advertisements
Advertisements

प्रश्न

Find the maximum and the minimum values of the function f(x) = x2ex.

बेरीज

उत्तर

f(x) = x2ex

∴ f'(x) = x2ex + ex(2x)

= xex(x + 2)

and f"(x) = `d/dx e^x(x^2 + 2x)`

= ex(2x + 2) + (x2 + 2x)ex

= ex(2x + 2 + x2 + 2x)

= ex(x2 + 4x + 2)

Put f'(x) = 0

∴ xex(x + 2) = 0

∴ x(x + 2) = 0, since ex ≠ 0

∴ x = 0, –2

Now `f^('')(x)|_(x = 0)`

= e0(2)

= 2 > 0

∴ f(x) is minimum at x = 0

∴ Min. f(x) = f(0)

= (0)e0

= 0

Also, `f^('')(x)|_(x = –2)`

= e–2(4 – 8 + 2)

= `(-2)/e^2 < 0` 

∴ f(x) is maximum at x = –2

∴ Max. f(x) = f(–2)

= 4e–2

= `4/e^2`

∴ Minimum value of f(x) = 0

and Maximum value of f(x) = `4/e^2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×