Advertisements
Advertisements
प्रश्न
Find the maximum and the minimum values of the function f(x) = x2ex.
बेरीज
उत्तर
f(x) = x2ex
∴ f'(x) = x2ex + ex(2x)
= xex(x + 2)
and f"(x) = `d/dx e^x(x^2 + 2x)`
= ex(2x + 2) + (x2 + 2x)ex
= ex(2x + 2 + x2 + 2x)
= ex(x2 + 4x + 2)
Put f'(x) = 0
∴ xex(x + 2) = 0
∴ x(x + 2) = 0, since ex ≠ 0
∴ x = 0, –2
Now `f^('')(x)|_(x = 0)`
= e0(2)
= 2 > 0
∴ f(x) is minimum at x = 0
∴ Min. f(x) = f(0)
= (0)e0
= 0
Also, `f^('')(x)|_(x = –2)`
= e–2(4 – 8 + 2)
= `(-2)/e^2 < 0`
∴ f(x) is maximum at x = –2
∴ Max. f(x) = f(–2)
= 4e–2
= `4/e^2`
∴ Minimum value of f(x) = 0
and Maximum value of f(x) = `4/e^2`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?