Advertisements
Advertisements
प्रश्न
Find the rank of the following matrices
`((1, -1),(3, -6))`
उत्तर
Let A = `((1, -1),(3, -6))`
Order of A is 2 × 2
∴ p(A) ≤ 2
Consider the second order minor = `|(1, -1),(3, -6)|`
= – 6 – (– 3)
= – 6 + 3
= – 3
|A| ≠ 0
There is a minor of order 2, which is not zero
∴ p(A) = 2
APPEARS IN
संबंधित प्रश्न
Find the rank of the following matrices
`((2, -1, 1),(3, 1, -5),(1, 1, 1))`
An amount of ₹ 5,000/- is to be deposited in three different bonds bearing 6%, 7% and 8% per year respectively. Total annual income is ₹ 358/-. If the income from the first two investments is ₹ 70/- more than the income from the third, then find the amount of investment in each bond by the rank method
Choose the correct alternative:
If A = `((2, 0),(0, 8))`, then p(A) is
Choose the correct alternative:
The rank of the matrix `((1, 1, 1),(1, 2, 3),(1, 4, 9))` is
Choose the correct alternative:
If the rank of the matrix `[(lambda, -1, 0),(0, lambda, -1),(-1, 0, lambda)]` is 2, then λ is
Choose the correct alternative:
The rank of the diagonal matrix `[(1, , , , ,),(, 2, , , ,),(, , -3, , ,),(, , , 0, ,),(, , , , 0,),(, , , , ,0)]`
Choose the correct alternative:
If p(A) = p(A, B)= the number of unknowns, then the system is
Find k if the equations 2x + 3y – z = 5, 3x – y + 4z = 2, x + 7y – 6z = k are consistent
Find k if the equations x + y + z = 1, 3x – y – z = 4, x + 5y + 5z = k are inconsistent
Let S be the set of all λ ∈ R for which the system of linear equations
2x – y + 2z = 2
x – 2y + λz = –4
x + λy + z = 4
has no solution. Then the set S ______.