मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता १२

Find the rank of the matrix A = (-213401121347) - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the rank of the matrix

A = `((-2, 1, 3, 4),(0, 1, 1, 2),(1, 3, 4, 7))`

तक्ता
बेरीज

उत्तर

A = `[(-2, 1, 3, 4),(0, 1, 1, 2),(1, 3, 4, 7)]`

The order of A is 3 × 4

∴ P(A) < 3

Let us transform the matrix A to an echelon form

Matrix Elementary
Transformation
A = `[(-2, 1, 3, 4),(0, 1, 1, 2),(1, 3, 4, 7)]`  
`∼ [(-2, 1, 3, 4),(1, 3, 4, 7),(0, 1, 1, 2)]` `{:"R"_2 ↔ "R"_3:}`
`∼ [(1, 3, 4, 7),(-2, 1, 3, 4),(0, 1, 1, 2)]` `{:"R"_2 ↔ "R"_1:}`
`∼  [(1, 3, 4, 7),(0, 7, 11, 18),(0, 1, 1, 2)]` `{:"R"_2 -> "R"_2 + 2"R"_1:}`
`∼ [(1, 3, 4, 7),(0, 1, 1, 2),(0, 7, 11, 18)]` `{:"R"_3 ↔ "R"_2:}`
`∼ [(1, 3, 4, 7),(0, 1, 1, 2),(0, 0, 4, 4)]` `{:"R"_3 -> "R"_3 + 7"R"_2:}`

The number of non-zero rows = 3

∴ p(A) = 3

shaalaa.com
Rank of a Matrix
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Applications of Matrices and Determinants - Miscellaneous problems [पृष्ठ २२]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
पाठ 1 Applications of Matrices and Determinants
Miscellaneous problems | Q 2 | पृष्ठ २२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×