मराठी

Find the square root of the following complex numbers: 1 + 4 3 i - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the square root of the following complex numbers: 1 + 4 `sqrt(3)  "i"`

बेरीज

उत्तर

Let `sqrt(1 + 4sqrt(3) "i")` = a + bi, where a, b ∈ R
Squaring on both sides, we get
1 + 4 `sqrt(3)  "i"` = (a + bi)2
∴ 1 + 4 `sqrt(3)  "i"` = a2 + b2i2 + 2abi
∴ 1 + 4 `sqrt(3)  "i"` = (a2 – b2) + 2abi       ...[∵ i2 = – 1]
Equating real and imaginary parts, we get
a2 – b2 = 1 and 2ab = `4sqrt(3)`

∴ a2 – b2 = 1 and b = `(2sqrt(3))/"a"`

∴ `"a"^2 - ((2sqrt(3))/"a")^2` = 1

∴ `"a"^2 - 12/"a"^2` = 1

∴ a4 – 12 = a2
∴ a4 – a2 – 12 = 0
∴ (a2 – 4)(a2 + 3) = 0
∴ a2 = 4 or a2 = – 3
But a ∈ R
∴ a2 ≠ – 3
∴ a2 = 4
∴ a = ± 2
When a = 2, b = `(2sqrt(3))/2 = sqrt(3)`

When a = – 2, b = `(2sqrt(3))/-2 = -sqrt(3)`

∴ `sqrt(1 + 4sqrt(3)"i") = ± (2 + sqrt(3)"i")`

shaalaa.com
Square Root of a Complex Number
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Complex Numbers - EXERCISE 3.2 [पृष्ठ ४०]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
पाठ 3 Complex Numbers
EXERCISE 3.2 | Q 1) iii) | पृष्ठ ४०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×