Advertisements
Advertisements
प्रश्न
Find the unit vector in the direction of the vector `veca = hati + hatj + 2hatk`.
उत्तर
The unit vector `veca` in the direction of vector `veca = hati + hatj + 2hatk` is given by `veca = veca/|a|`.
`|veca| = sqrt(1^2 + 1^2 + 2^2) `
`= sqrt(1 + 1 + 4) `
`= sqrt6`
Unit vector in the direction of vector a,
`therefore hata = veca/|veca| `
`= (hati + hatj + 2hatk)/sqrt6 `
`= 1/sqrt6hati + 1/sqrt6hatj + 2/sqrt6hatk`
APPEARS IN
संबंधित प्रश्न
Find the unit vector in the direction of vector `vec(PQ)`, where P and Q are the points (1, 2, 3) and (4, 5, 6), respectively.
If `vec"a", vec"b", vec"c"` are three vectors such that `vec"a" + vec"b" + vec"a" = vec0` and `|vec"a"|` = 2, `|vec"b"|` = 3, `|vec"c"|` = 5, then value of `vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a"` is ______.
If `|vec"a"| = |vec"b"|`, then necessarily it implies `vec"a" = +- vec"b"`.
If `veca, vecb, vecc` are three vectors such that `veca.vecb = veca.vecc` and `veca xx vecb = veca xx vecc, veca ≠ 0`, then show that `vecb = vecc`.
If `|veca`| = 3, `|vecb|` = 5, `|vecc|` = 4 and `veca + vecb + vecc` = `vec0`, then find the value of `(veca.vecb + vecb.vecc + vecc.veca)`.