मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Find the value of |53-7-4|. - Algebra

Advertisements
Advertisements

प्रश्न

Find the value of `|(5,3),(-7,-4)|`.

पर्याय

  • –1

  • –41

  • 41

  • 1

MCQ

उत्तर

1

Explanation:

`|(5,3),(-7,-4)|=5xx(-4)xx-3xx(-7)`

= -20 + 21

= 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Linear Equations in Two Variables - Problem Set 1 [पृष्ठ २७]

APPEARS IN

बालभारती Algebra (Mathematics 1) [English] 10 Standard SSC Maharashtra State Board
पाठ 1 Linear Equations in Two Variables
Problem Set 1 | Q 1.3 | पृष्ठ २७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the value of determinant: `|[4,-2],[3,1]|`

 


Choose correct alternative for the following question.
To draw graph of 4x + 5y = 19, Find y when x = 1.


Choose correct alternative for the following question.

To solve x + y = 3; 3x – 2y – 4 = 0 by determinant method find D.


Choose correct alternative for the following question.
ax + by = c and mx + ny = d and an ≠ bm then these simultaneous equations have -


Find the value of the following determinant.

`|(4,3),(2,7)|`

Select the correct alternative and write it. 

What is the degree of the determinant `|[a ,b],[c,d]|`


Find the value of the determinant: `|(-3,8),(6,0)|`


`|(3, 5),(2, x)|` = 2 ∴ x = ______


For equations 5x + 3y + 11 = 0 and 2x + 4y = −10 find D.


Find the value of Dx for the equation 4x + 3y = 19 and 4x − 3y = −11


Solve the following to find the value of following determinant.

`|(3, -2),(4, 5)| = 3 xx square - square xx 4 = square + 8 = square`


Find the value of `|(5, 2),(0, -1)|`


Using the determinants given below form two linear equations and solve them.

D = `|(5, 7),(2, -3)|`, Dy = `|(5, 4),(2, -10)|`


Form the simultaneous linear equations using the determinants

D = `|(4, -3),(2, 5)|`, Dx = `|(5, -3),(9, 5)|`, Dy = `|(4, 5),(2, 9)|`


Complete the activity to find the value of the determinant.

Activity: `|(2sqrt3, 9),(2, 3sqrt(3))| = 2sqrt(3) xx square - 9 xx square`

= `square` – 18

= `square`


Find the value of the determinant:

`[(7/5,5/3), (3/2, 1/2)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×